Menu Close

Find-the-sum-n-1-1-n-1-n-n-n-1-




Question Number 11800 by tawa last updated on 01/Apr/17
Find the sum  Σ_(n=1) ^∞  (1/((n + 1)(√n)  +  n(√(n + 1))))
Findthesumn=11(n+1)n+nn+1
Answered by FilupS last updated on 01/Apr/17
(1/((n+1)(√n)+n(√(n+1))))=(1/( (√n)))−(1/( (√(n+1))))  ⇒Σ_(n=1) ^∞ ((1/( (√n)))−(1/( (√(n+1)))))  =((1/( (√1)))−(1/( (√2))))+((1/( (√2)))−(1/( (√3))))+((1/( (√3)))−(1/( (√4))))+...+((1/( (√(n−1))))−(1/( (√n))))+((1/( (√n)))−(1/( (√(n+1)))))  =(1/( (√1)))−(1/( (√(n+1))))  =1−(1/( (√(n+1))))  as  n→∞,   (1/( (√(n+1))))→0  ∴=1
1(n+1)n+nn+1=1n1n+1n=1(1n1n+1)=(1112)+(1213)+(1314)++(1n11n)+(1n1n+1)=111n+1=11n+1asn,1n+10∴=1
Commented by FilupS last updated on 01/Apr/17
I′m unable to do the working for line 1.  I used WolframAlpha to expand
Imunabletodotheworkingforline1.IusedWolframAlphatoexpand
Commented by tawa last updated on 01/Apr/17
i appreciate sir. God bless you sir.
iappreciatesir.Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *