Menu Close

find-the-sum-of-n-0-n-2-3n-1-e-n-




Question Number 73231 by mathmax by abdo last updated on 08/Nov/19
find the sum of  Σ_(n=0) ^∞ (n^2 −3n+1)e^(−n)
findthesumofn=0(n23n+1)en
Commented by mathmax by abdo last updated on 09/Nov/19
we have Σ_(n=0) ^∞ (n^2 −3n+1)e^(−n)  =Σ_(n=0) ^∞ n^2 (e^(−1) )^n −3Σ_(n=0) ^∞  n(e^(−1) )^n   +Σ_(n=0) ^∞  e^(−n)    first Σ_(n=0) ^∞  e^(−n) =Σ_(n=0) ^∞ (e^(−1) )^n  =(1/(1−e^(−1) )) =(e/(e−1))  let calculate f(x)=Σ_(n=0) ^∞  nx^n   and g(x)=Σ_(n=0) ^∞ n^2 x^n  with ∣x∣<1  we have Σ_(n=0) ^∞  x^n  =(1/(1−x)) ⇒Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  n x^n  =(x/((1−x)^2 )) ⇒Σ_(n=0) ^∞  ne^(−n)  =(e^(−1) /((1−e^(−1) )^2 )) =(e^2 /((e−1)^2 )) also  Σ_(n=1) ^∞  n^2  x^(n−1)  =(((1−x)^2 −x(−2)(1−x))/((1−x)^4 )) =((1−x+2x)/((1−x)^3 )) =((x+1)/((1−x)^3 )) ⇒  Σ_(n=0) ^∞  n^2  x^n  =((x^2  +x)/((1−x)^3 )) ⇒Σ_(n=0) ^∞  n^2 e^(−n)  =((e^(−2)  +e^(−1) )/((1−e^(−1) )^3 ))  =((e+e^2 )/((e−1)^3 )) ⇒Σ_(n=0) ^∞ (n^2 −3n +1)e^(−n)  =((e+e^2 )/((e−1)^3 ))−((3e^2 )/((e−1)^2 )) +(e/(e−1))  =((e+e^2 −3e^2 (e−1)+e(e−1)^2 )/((e−1)^3 )) =((e+e^2 −3e^3 +3e^2 +e(e^2 −2e +1))/((e−1)^3 ))  =((−3e^3  +4e^2  +e+e^3 −2e^2  +e)/((e−1)^3 )) =((−2e^3 +2e^2 +2e)/((e−1)^3 ))
wehaven=0(n23n+1)en=n=0n2(e1)n3n=0n(e1)n+n=0enfirstn=0en=n=0(e1)n=11e1=ee1letcalculatef(x)=n=0nxnandg(x)=n=0n2xnwithx∣<1wehaven=0xn=11xn=1nxn1=1(1x)2n=1nxn=x(1x)2n=0nen=e1(1e1)2=e2(e1)2alson=1n2xn1=(1x)2x(2)(1x)(1x)4=1x+2x(1x)3=x+1(1x)3n=0n2xn=x2+x(1x)3n=0n2en=e2+e1(1e1)3=e+e2(e1)3n=0(n23n+1)en=e+e2(e1)33e2(e1)2+ee1=e+e23e2(e1)+e(e1)2(e1)3=e+e23e3+3e2+e(e22e+1)(e1)3=3e3+4e2+e+e32e2+e(e1)3=2e3+2e2+2e(e1)3
Answered by mind is power last updated on 08/Nov/19
n^2 −3n+1=(n+1)(n+2)−6(n+1)+5  Σ_(n≥0) (n+1)(n+2)e^(−n) −6Σ_(n≥0) (n+1)e^(−n) +5Σ_(n≥0) e^(−n)   (1/(1−x))=Σx^k ⇒(1/((1−x)^2 )).Σ_(k≥1) kx^(k−1) =Σ_(k≥0) (k+1)x^k   x=e^(−1) ⇒Σe^(−n) =(1/(1−e^(−1) ))=(e/(e−1))  ⇒x=e^(−1) ⇒(1/((1−e^(−1) )^2 ))=Σ_(n≥0) (n+1)e^(−n) =(e^2 /((e−1)))  (1/((1−x)^2 ))=Σ_(k≥0) (k+1)x^k ⇒Σ_(k≥1) k(k+1)x^(k−1) =(2/((1−x)^3 ))=Σ_(k≥0) (k+1)(k+2)x^k   x=e^(−1) ⇒Σ_(n≥0) (n+1)(n+2)e^(−n) =(2/((1−e^(−1) )^3 ))=((2e^3 )/((e−1)^3 ))  so we get ((2e^3 )/((e−1)^3 ))−((6e^2 )/((e−1)^2 ))+((5e)/((e−1)))  =((e^3 −4e^2 +5e)/((e−1)^3 ))
n23n+1=(n+1)(n+2)6(n+1)+5n0(n+1)(n+2)en6n0(n+1)en+5n0en11x=Σxk1(1x)2.k1kxk1=k0(k+1)xkx=e1Σen=11e1=ee1x=e11(1e1)2=n0(n+1)en=e2(e1)1(1x)2=k0(k+1)xkk1k(k+1)xk1=2(1x)3=k0(k+1)(k+2)xkx=e1n0(n+1)(n+2)en=2(1e1)3=2e3(e1)3soweget2e3(e1)36e2(e1)2+5e(e1)=e34e2+5e(e1)3
Commented by mathmax by abdo last updated on 08/Nov/19
thankx sir.
thankxsir.

Leave a Reply

Your email address will not be published. Required fields are marked *