find-the-sum-of-n-0-n-2-3n-1-e-n- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 73231 by mathmax by abdo last updated on 08/Nov/19 findthesumof∑n=0∞(n2−3n+1)e−n Commented by mathmax by abdo last updated on 09/Nov/19 wehave∑n=0∞(n2−3n+1)e−n=∑n=0∞n2(e−1)n−3∑n=0∞n(e−1)n+∑n=0∞e−nfirst∑n=0∞e−n=∑n=0∞(e−1)n=11−e−1=ee−1letcalculatef(x)=∑n=0∞nxnandg(x)=∑n=0∞n2xnwith∣x∣<1wehave∑n=0∞xn=11−x⇒∑n=1∞nxn−1=1(1−x)2⇒∑n=1∞nxn=x(1−x)2⇒∑n=0∞ne−n=e−1(1−e−1)2=e2(e−1)2also∑n=1∞n2xn−1=(1−x)2−x(−2)(1−x)(1−x)4=1−x+2x(1−x)3=x+1(1−x)3⇒∑n=0∞n2xn=x2+x(1−x)3⇒∑n=0∞n2e−n=e−2+e−1(1−e−1)3=e+e2(e−1)3⇒∑n=0∞(n2−3n+1)e−n=e+e2(e−1)3−3e2(e−1)2+ee−1=e+e2−3e2(e−1)+e(e−1)2(e−1)3=e+e2−3e3+3e2+e(e2−2e+1)(e−1)3=−3e3+4e2+e+e3−2e2+e(e−1)3=−2e3+2e2+2e(e−1)3 Answered by mind is power last updated on 08/Nov/19 n2−3n+1=(n+1)(n+2)−6(n+1)+5∑n⩾0(n+1)(n+2)e−n−6∑n⩾0(n+1)e−n+5∑n⩾0e−n11−x=Σxk⇒1(1−x)2.∑k⩾1kxk−1=∑k⩾0(k+1)xkx=e−1⇒Σe−n=11−e−1=ee−1⇒x=e−1⇒1(1−e−1)2=∑n⩾0(n+1)e−n=e2(e−1)1(1−x)2=∑k⩾0(k+1)xk⇒∑k⩾1k(k+1)xk−1=2(1−x)3=∑k⩾0(k+1)(k+2)xkx=e−1⇒∑n⩾0(n+1)(n+2)e−n=2(1−e−1)3=2e3(e−1)3soweget2e3(e−1)3−6e2(e−1)2+5e(e−1)=e3−4e2+5e(e−1)3 Commented by mathmax by abdo last updated on 08/Nov/19 thankxsir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-and-are-the-roots-of-the-equation-3x-2-x-2-0-find-the-equation-whose-roots-are-1-2-and-1-2-and-show-that-27-4-11-10-Next Next post: calculate-A-n-0-1-x-n-2-x-2n-dx-and-J-n-0-2-x-3n-5-x-7n-dx-with-n-integr-natural-not-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.