Question Number 78162 by TawaTawa last updated on 14/Jan/20

Commented by msup trace by abdo last updated on 15/Jan/20

Commented by TawaTawa last updated on 15/Jan/20

Commented by mathmax by abdo last updated on 15/Jan/20
![this sum can be reduced by this manner by iam waiting for a miraculous method..! let ξ_n (2)=Σ_(k=1) ^n (1/k^2 ) ⇒ ξ_n (2) =Σ_(p=1) ^([(n/2)]) (1/((2p)^2 )) +Σ_(p=0) ^([((n−1)/2)]) (1/((2p+1)^2 )) =(1/4) ξ_([(n/2)]) (2)+Σ_(p=0) ^([((n−1)/2)]) (1/((2p+1)^2 )) and ξ_([(n/2)]) (2) =Σ_(k=1) ^([(n/2)]) (1/k^2 ) =Σ_(p=1) ^([(1/2)[(n/2)]]) (1/((2p)^2 )) +Σ_(p=0) ^([(([(n/2)]−1)/2)]) (1/((2p+1)^2 )) =ξ_([(([(n/2)])/2)]) (2) +Σ_(p=0) ^([(([(n/2)]−1)/2)]) (1/((2p+1)^2 )) and we remplace in ξ_n (2) also we can use the decomposition ξ_n (2) =Σ_(p=1) ^([(n/3)]) (1/((3p)^2 )) + Σ_(p=0) ^([((n−1)/3)]) (1/((3p+1)^2 )) +Σ_(p=0) ^([((n−2)/3)]) (1/((3p+2)^2 )) =....](https://www.tinkutara.com/question/Q78250.png)
Commented by TawaTawa last updated on 15/Jan/20
