Menu Close

Find-the-sum-of-nth-term-k-1-n-1-k-2-




Question Number 78162 by TawaTawa last updated on 14/Jan/20
Find the sum of nth term     Σ_(k = 1) ^n  (1/k^2 )
Findthesumofnthtermnk=11k2
Commented by msup trace by abdo last updated on 15/Jan/20
if you have the answer post it...
ifyouhavetheanswerpostit
Commented by TawaTawa last updated on 15/Jan/20
I don′t know the answer or how to solve.
Idontknowtheanswerorhowtosolve.
Commented by mathmax by abdo last updated on 15/Jan/20
this sum can be reduced by this manner by iam waiting for  a miraculous method..!   let ξ_n (2)=Σ_(k=1) ^n  (1/k^2 ) ⇒  ξ_n (2) =Σ_(p=1) ^([(n/2)])   (1/((2p)^2 )) +Σ_(p=0) ^([((n−1)/2)])  (1/((2p+1)^2 ))  =(1/4) ξ_([(n/2)])  (2)+Σ_(p=0) ^([((n−1)/2)])  (1/((2p+1)^2 ))  and  ξ_([(n/2)]) (2) =Σ_(k=1) ^([(n/2)])  (1/k^2 ) =Σ_(p=1) ^([(1/2)[(n/2)]]) (1/((2p)^2 )) +Σ_(p=0) ^([(([(n/2)]−1)/2)]) (1/((2p+1)^2 ))  =ξ_([(([(n/2)])/2)]) (2) +Σ_(p=0) ^([(([(n/2)]−1)/2)])  (1/((2p+1)^2 )) and we remplace in ξ_n (2)  also we can use the decomposition   ξ_n (2) =Σ_(p=1) ^([(n/3)])  (1/((3p)^2 )) + Σ_(p=0) ^([((n−1)/3)])  (1/((3p+1)^2 )) +Σ_(p=0) ^([((n−2)/3)])  (1/((3p+2)^2 ))  =....
thissumcanbereducedbythismannerbyiamwaitingforamiraculousmethod..!letξn(2)=k=1n1k2ξn(2)=p=1[n2]1(2p)2+p=0[n12]1(2p+1)2=14ξ[n2](2)+p=0[n12]1(2p+1)2andξ[n2](2)=k=1[n2]1k2=p=1[12[n2]]1(2p)2+p=0[[n2]12]1(2p+1)2=ξ[[n2]2](2)+p=0[[n2]12]1(2p+1)2andweremplaceinξn(2)alsowecanusethedecompositionξn(2)=p=1[n3]1(3p)2+p=0[n13]1(3p+1)2+p=0[n23]1(3p+2)2=.
Commented by TawaTawa last updated on 15/Jan/20
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *