Menu Close

Find-the-sum-of-the-series-1-3-2-3-3-3-4-3-2n-1-3-




Question Number 1784 by 112358 last updated on 25/Sep/15
Find the sum of the series   1^3 −2^3 +3^3 −4^3 +...+(2n+1)^3  .
Findthesumoftheseries1323+3343++(2n+1)3.
Answered by Rasheed Soomro last updated on 25/Sep/15
This is a compound series.  1^3 −2^3 +3^3 −4^3 +...−(2n)^3 +(2n+1)^3         =1^3 −{2^3 +4^3 ...+(2n)^3  }+{3^3 +5^3 +...+(2n+1)^3 }       =1−{2[n(n+1)]^2 }+{(1^3 +3^3 +...+(2n−1)^3 )−1^3 +(2n+1)^3 }      =1−2[n(n+1)]^2 +{n^2 (2n^2 −1)−1+(2n+1)^3 }      =−2[n(n+1)]^2 +n^2 (2n^2 −1)+(2n+1)^3       =n^2 {2n^2 −1−2(n^2 +2n+1)}+(2n+1)^3       =n^2 {2n^2 −1−2n^2 −4n−2}+(2n+1)^3       =(2n+1)^3 −n^2 (4n+3)      =4n^3 +9n^2 +6n+1  Verification:  Let   S=1^3 −2^3 +3^3 −4^3 +5^3 =81 (Directly)  By formula:  (2n+1)^3 =5^3 ⇒n=2  S=4(2)^3 +9(2)^2 +6(2)+1     =4(8)+9(4)+6(2)+1     =32+36+12+1=81 (Same)  Formulae used in above         2^3 +4^3 +6^3 +...+(2n)^3 =2[n(n+1)]^2          1^3 +3^3 +5^3 +...+(2n−1)^3 =n^2 (2n^2 −1)
Thisisacompoundseries.1323+3343+(2n)3+(2n+1)3=13{23+43+(2n)3}+{33+53++(2n+1)3}=1{2[n(n+1)]2}+{(13+33++(2n1)3)13+(2n+1)3}=12[n(n+1)]2+{n2(2n21)1+(2n+1)3}=2[n(n+1)]2+n2(2n21)+(2n+1)3=n2{2n212(n2+2n+1)}+(2n+1)3=n2{2n212n24n2}+(2n+1)3=(2n+1)3n2(4n+3)=4n3+9n2+6n+1Verification:LetS=1323+3343+53=81(Directly)Byformula:(2n+1)3=53n=2S=4(2)3+9(2)2+6(2)+1=4(8)+9(4)+6(2)+1=32+36+12+1=81(Same)Formulaeusedinabove23+43+63++(2n)3=2[n(n+1)]213+33+53++(2n1)3=n2(2n21)

Leave a Reply

Your email address will not be published. Required fields are marked *