Find-the-sum-of-the-series-1-3-2-3-3-3-4-3-2n-1-3- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 1784 by 112358 last updated on 25/Sep/15 Findthesumoftheseries13−23+33−43+…+(2n+1)3. Answered by Rasheed Soomro last updated on 25/Sep/15 Thisisacompoundseries.13−23+33−43+…−(2n)3+(2n+1)3=13−{23+43…+(2n)3}+{33+53+…+(2n+1)3}=1−{2[n(n+1)]2}+{(13+33+…+(2n−1)3)−13+(2n+1)3}=1−2[n(n+1)]2+{n2(2n2−1)−1+(2n+1)3}=−2[n(n+1)]2+n2(2n2−1)+(2n+1)3=n2{2n2−1−2(n2+2n+1)}+(2n+1)3=n2{2n2−1−2n2−4n−2}+(2n+1)3=(2n+1)3−n2(4n+3)=4n3+9n2+6n+1Verification:LetS=13−23+33−43+53=81(Directly)Byformula:(2n+1)3=53⇒n=2S=4(2)3+9(2)2+6(2)+1=4(8)+9(4)+6(2)+1=32+36+12+1=81(Same)Formulaeusedinabove23+43+63+…+(2n)3=2[n(n+1)]213+33+53+…+(2n−1)3=n2(2n2−1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-point-on-the-paraboloid-z-x-2-y-2-which-is-closest-to-the-point-3-6-4-Next Next post: Find-the-value-of-Q-if-Q-0-pi-2-ln-1-sinx-1-cosx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.