Menu Close

Find-the-sum-of-x-x-1-x-x-1-x-2-x-1-x-3-for-1-1-x-lt-1-




Question Number 76794 by necxxx last updated on 30/Dec/19
Find the sum of  x + (x/(1+x)) + (x/((1+x)^2 )) + (x/((1+x)^3 ))+.... for  ∣(1/(1+x))∣<1
$${Find}\:{the}\:{sum}\:{of} \\ $$$${x}\:+\:\frac{{x}}{\mathrm{1}+{x}}\:+\:\frac{{x}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:+\:\frac{{x}}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }+….\:{for} \\ $$$$\mid\frac{\mathrm{1}}{\mathrm{1}+{x}}\mid<\mathrm{1} \\ $$
Commented by turbo msup by abdo last updated on 30/Dec/19
S(x)=x(1+(1/(1+x)) +((1/(1+x)))^2  +....)  =(x/(1−(1/(1+x)))) =(x/((1+x−1)/(1+x)))=1+x
$${S}\left({x}\right)={x}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{x}}\:+\left(\frac{\mathrm{1}}{\mathrm{1}+{x}}\right)^{\mathrm{2}} \:+….\right) \\ $$$$=\frac{{x}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{x}}}\:=\frac{{x}}{\frac{\mathrm{1}+{x}−\mathrm{1}}{\mathrm{1}+{x}}}=\mathrm{1}+{x} \\ $$
Answered by Rio Michael last updated on 30/Dec/19
 S_∞  = (x/(1−(1/(1+x))))  = (x/((1+x−1)/(1+x))) = x . ((1+x)/x) = 1+x
$$\:\mathrm{S}_{\infty} \:=\:\frac{{x}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{x}}}\:\:=\:\frac{{x}}{\frac{\mathrm{1}+{x}−\mathrm{1}}{\mathrm{1}+{x}}}\:=\:{x}\:.\:\frac{\mathrm{1}+{x}}{{x}}\:=\:\mathrm{1}+{x} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *