Menu Close

Find-the-sum-r-0-n-3r-5-n-r-5-n-0-8-n-1-11-n-2-3n-5-n-n-as-a-simple-function-of-n-




Question Number 519 by Yugi last updated on 25/Jan/15
Find the sum Σ_(r=0) ^n (3r+5) ((n),(r) )=5 ((n),(0) ) +8 ((n),(1) ) +11 ((n),(2) ) +...(3n+5) ((n),(n) )   as a simple function of n.
Findthesumnr=0(3r+5)(nr)=5(n0)+8(n1)+11(n2)+(3n+5)(nn)asasimplefunctionofn.
Commented by prakash jain last updated on 22/Jan/15
Σ_(r=0) ^n (3r+5)^n C_r
nr=0(3r+5)nCr
Answered by prakash jain last updated on 23/Jan/15
Σ_(r=0) ^n (3r+5)^n C_r =3Σ_(r=0) ^n r ^n C_r +5Σ_(r=0) ^n ^n C_r   =3n∙2^(n−1) +5∙2^n   Note  2^n =(1+1)^n =^n C_0 +^n C_1 +...+^n C_n   Σ_(r=0) ^n r^n C_r =^n C_1 +2^n C_2 +....+n^n C_n   =n+2((n(n−1))/(1∙2))+3((n(n−1)(n−2))/(1∙2∙3))+...+n∙((n(n−1)..1)/(1∙2∙...∙n))  =n[1+(((n−1))/1)+(((n−1)(n−2))/(1∙2))+...+(((n−1)(n−2)...1)/(1∙2∙...(n−1)))]  =n[^(n−1) C_0 +^(n−1) C_1 +^(n−1) C_2 +...+^(n−1) C_(n−1) ]  =n∙2^(n−1)
nr=0(3r+5)nCr=3nr=0rnCr+5nr=0nCr=3n2n1+52nNote2n=(1+1)n=nC0+nC1++nCnnr=0rnCr=nC1+2nC2+.+nnCn=n+2n(n1)12+3n(n1)(n2)123++nn(n1)..112n=n[1+(n1)1+(n1)(n2)12++(n1)(n2)112(n1)]=n[n1C0+n1C1+n1C2++n1Cn1]=n2n1
Commented by 112358 last updated on 23/Jan/15
Thanks a lot
Thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *