Menu Close

Find-the-sum-to-n-terms-of-the-series-S-x-r-0-n-e-x-r-




Question Number 2207 by Yozzi last updated on 08/Nov/15
Find the sum to n terms of the series                      S(x)=Σ_(r=0) ^n e^(−x^r ) .
FindthesumtontermsoftheseriesS(x)=nr=0exr.
Commented by 123456 last updated on 09/Nov/15
S(x)=Σ_(r=0) ^n e^(−x^r ) =(1/e)+Σ_(r=1) ^n e^(−x^r )  (n>0)  =((1+Σ_(r=1) ^n e^(1−x^r ) )/e)  (n>0)  =((Σ_(r=0) ^n e^(1−x^r ) )/e)
S(x)=nr=0exr=1e+nr=1exr(n>0)=1+nr=1e1xre(n>0)=nr=0e1xre
Answered by Rasheed Soomro last updated on 16/Nov/15
S(x)=Σ_(r=0) ^n e^(−x^r )                      e^x =1+x+(x^2 /(2!))+(x^3 /(3!))+...+(x^n /(n!))  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−      e^(−x^0 ) =e^(−1) =1−1+(1/(2!))−(1/(3!))+...±(1/(n!))   [+ for even n, − for odd n]  +e^(−x^1 ) =e^(−x) =1−x+(x^2 /(2!))−(x^3 /(3!))+...±(x^n /(n!))  +e^(−x^2 ) =       =1−x^2 +(x^4 /(2!))−(x^6 /(3!))+...±(x^(2n) /(n!))  +e^(−x^3 ) =       =1−x^3 +(x^6 /(2!))−(x^9 /(3!))+....±(x^(3n) /(n!))  +e^(−x^4 ) =       =1−x^4 +(x^8 /(2!))−(x^(12) /(3!))+...±(x^(4n) /(n!))  +....               ....      .....     ....    .....   .......  +....               ....      ......    ....   .....   .......  +e^(−x^n )   S(x)   is   sum of n+1  geometric series  S(x)=(1+1+...n+1 terms)−(1+x+x^2 +...n+1 terms)                  +(1/(2!))(1+x^2 +x^4 +...n+1 terms)−(1/(3!))(1+x^3 +x^6 +...n+1 terms)                 ...+(1/(n!))(1±x^n +x^(2n) ....n+1 terms)  [+for even n, −for odd]      =1(n+1)−((1(1−x^(n+1) ))/(1−x))+(1/(2!))(((1(1−(x^2 )^(n+1) )/(1−x^2 )))....     =(n+1)−(((1−x^(n+1) ))/(1−x))+(1/(2!))(((1−(x^2 )^(n+1) )/(1−x^2 )))−...  Continue
S(x)=nr=0exrex=1+x+x22!+x33!++xnn!ex0=e1=11+12!13!+±1n![+forevenn,foroddn]+ex1=ex=1x+x22!x33!+±xnn!+ex2==1x2+x42!x63!+±x2nn!+ex3==1x3+x62!x93!+.±x3nn!+ex4==1x4+x82!x123!+±x4nn!+........+......+exnS(x)issumofn+1geometricseriesS(x)=(1+1+n+1terms)(1+x+x2+n+1terms)+12!(1+x2+x4+n+1terms)13!(1+x3+x6+n+1terms)+1n!(1±xn+x2n.n+1terms)[+forevenn,forodd]=1(n+1)1(1xn+1)1x+12!(1(1(x2)n+11x2).=(n+1)(1xn+1)1x+12!(1(x2)n+11x2)Continue

Leave a Reply

Your email address will not be published. Required fields are marked *