Menu Close

Find-the-superimum-of-the-set-n-2-2-n-




Question Number 74554 by shubham90412@gmail.com last updated on 26/Nov/19
Find the superimum of the set {(n^2 /2^n )}
$$\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{superimum}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{set}}\:\left\{\frac{\boldsymbol{{n}}^{\mathrm{2}} }{\mathrm{2}^{\boldsymbol{{n}}} }\right\} \\ $$
Answered by MJS last updated on 26/Nov/19
trying  S={0, (1/2), 1, (9/8), 1, ((25)/(32)), (9/(16)), ...}    calculating  f(x)=(x^2 /2^x )  f′(x)=(x/2^x )(2−xln 2)  (x/2^x )(2−xln 2)=0 ⇒ x=0∨x=(2/(ln 2))≈2.89  f′′(x)=(((ln 2)^2 x^2 −4xln 2 +2)/2^x )  f′′(0)>0 ⇒ x=0 is minimum  f′′((2/(ln 2)))<0 ⇒ x=(2/(ln 2)) is maximum  ⇒ we have to try n=⌊(2/(ln 2))⌋=2∨n=⌈(2/(ln 2))⌉=3  ⇒ supremium at n=3
$$\mathrm{trying} \\ $$$${S}=\left\{\mathrm{0},\:\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{1},\:\frac{\mathrm{9}}{\mathrm{8}},\:\mathrm{1},\:\frac{\mathrm{25}}{\mathrm{32}},\:\frac{\mathrm{9}}{\mathrm{16}},\:…\right\} \\ $$$$ \\ $$$$\mathrm{calculating} \\ $$$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{\mathrm{2}^{{x}} } \\ $$$${f}'\left({x}\right)=\frac{{x}}{\mathrm{2}^{{x}} }\left(\mathrm{2}−{x}\mathrm{ln}\:\mathrm{2}\right) \\ $$$$\frac{{x}}{\mathrm{2}^{{x}} }\left(\mathrm{2}−{x}\mathrm{ln}\:\mathrm{2}\right)=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{0}\vee{x}=\frac{\mathrm{2}}{\mathrm{ln}\:\mathrm{2}}\approx\mathrm{2}.\mathrm{89} \\ $$$${f}''\left({x}\right)=\frac{\left(\mathrm{ln}\:\mathrm{2}\right)^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{4}{x}\mathrm{ln}\:\mathrm{2}\:+\mathrm{2}}{\mathrm{2}^{{x}} } \\ $$$${f}''\left(\mathrm{0}\right)>\mathrm{0}\:\Rightarrow\:{x}=\mathrm{0}\:\mathrm{is}\:\mathrm{minimum} \\ $$$${f}''\left(\frac{\mathrm{2}}{\mathrm{ln}\:\mathrm{2}}\right)<\mathrm{0}\:\Rightarrow\:{x}=\frac{\mathrm{2}}{\mathrm{ln}\:\mathrm{2}}\:\mathrm{is}\:\mathrm{maximum} \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{try}\:{n}=\lfloor\frac{\mathrm{2}}{\mathrm{ln}\:\mathrm{2}}\rfloor=\mathrm{2}\vee{n}=\lceil\frac{\mathrm{2}}{\mathrm{ln}\:\mathrm{2}}\rceil=\mathrm{3} \\ $$$$\Rightarrow\:\mathrm{supremium}\:\mathrm{at}\:{n}=\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *