Menu Close

Find-the-superimum-of-the-set-n-2-2-n-




Question Number 74554 by shubham90412@gmail.com last updated on 26/Nov/19
Find the superimum of the set {(n^2 /2^n )}
Findthesuperimumoftheset{n22n}
Answered by MJS last updated on 26/Nov/19
trying  S={0, (1/2), 1, (9/8), 1, ((25)/(32)), (9/(16)), ...}    calculating  f(x)=(x^2 /2^x )  f′(x)=(x/2^x )(2−xln 2)  (x/2^x )(2−xln 2)=0 ⇒ x=0∨x=(2/(ln 2))≈2.89  f′′(x)=(((ln 2)^2 x^2 −4xln 2 +2)/2^x )  f′′(0)>0 ⇒ x=0 is minimum  f′′((2/(ln 2)))<0 ⇒ x=(2/(ln 2)) is maximum  ⇒ we have to try n=⌊(2/(ln 2))⌋=2∨n=⌈(2/(ln 2))⌉=3  ⇒ supremium at n=3
tryingS={0,12,1,98,1,2532,916,}calculatingf(x)=x22xf(x)=x2x(2xln2)x2x(2xln2)=0x=0x=2ln22.89f(x)=(ln2)2x24xln2+22xf(0)>0x=0isminimumf(2ln2)<0x=2ln2ismaximumwehavetotryn=2ln2=2n=2ln2=3supremiumatn=3

Leave a Reply

Your email address will not be published. Required fields are marked *