Menu Close

find-the-turning-point-on-the-curve-y-16-x-x-3-3-and-determine-wether-it-is-a-point-of-maximum-or-minimum-




Question Number 7401 by txsnims last updated on 27/Aug/16
find the turning point on the curve y=((16)/x)+(x^3 /(3 ))  and determine wether it is a point of maximum or minimum
findtheturningpointonthecurvey=16x+x33anddeterminewetheritisapointofmaximumorminimum
Answered by FilupSmith last updated on 27/Aug/16
y=16x^(−1) +3^(−1) x^3   turning point at y′=0  y^′ =−16x^(−2) +x^2 =0  x^2 =((16)/x^2 )  x^4 =16  (x^2 )^2 =(±4)^2   x=±2       for x∈R     x=+2  y′′=32x^(−3) +2x  y′′=32((1/8))+4(2)  y′′>0     ∴minimum when x=2    x=−2  y′′=32((1/(−8)))+4(−2)  y′′<0    ∴ maximum when x=−2
y=16x1+31x3turningpointaty=0y=16x2+x2=0x2=16x2x4=16(x2)2=(±4)2x=±2forxRx=+2y=32x3+2xy=32(18)+4(2)y>0minimumwhenx=2x=2y=32(18)+4(2)y<0maximumwhenx=2

Leave a Reply

Your email address will not be published. Required fields are marked *