Menu Close

find-the-value-of-0-1-ln-1-x-2-x-2-dx-




Question Number 66796 by mathmax by abdo last updated on 19/Aug/19
find the value of  ∫_0 ^1  ((ln(1+x^2 ))/x^2 )dx
findthevalueof01ln(1+x2)x2dx
Commented by mathmax by abdo last updated on 20/Aug/19
let I =∫_0 ^1 ((ln(1+x^2 ))/x^2 )dx  by parts  u^′ =(1/x^2 ) and v=ln(1+x^2 ) ⇒  I =[−(1/x)ln(1+x^2 )]_0 ^1 −∫_0 ^1 (−(1/x))((2x)/(1+x^2 ))dx  =−ln(2) +∫_0 ^1  (2/(1+x^2 ))dx =−ln(2)+2[arctanx]_0 ^1  =−ln(2)+2((π/4))  =(π/2)−ln(2) rest to prove that lim_(x→0)   ((ln(1+x^2 ))/x) =0  =lim_(x→0)   x ((ln(1+x^2 ))/x^2 ) =0  because lim_(u→0)   ((ln(1+u))/u) =1
letI=01ln(1+x2)x2dxbypartsu=1x2andv=ln(1+x2)I=[1xln(1+x2)]0101(1x)2x1+x2dx=ln(2)+0121+x2dx=ln(2)+2[arctanx]01=ln(2)+2(π4)=π2ln(2)resttoprovethatlimx0ln(1+x2)x=0=limx0xln(1+x2)x2=0becauselimu0ln(1+u)u=1
Commented by mathmax by abdo last updated on 20/Aug/19
remark  we have ln^′ (1+u) =(1/(1+u)) =Σ_(n=0) ^∞ (−1)^n u^n  if ∣u∣<1 ⇒  ln(1+u) =Σ_(n=0) ^∞  (((−1)^n )/(n+1))u^(n+1)  =Σ_(n=1) ^∞  (((−1)^(n−1) u^n )/n) =−Σ_(n=1) ^∞ (((−1)^n )/n)u^n   ⇒ln(1+x^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n) x^(2n)  ⇒((ln(1+x^2 ))/x^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n)x^(2n−2)   ⇒∫_0 ^1  ((ln(1+x^2 ))/x^2 )dx =−Σ_(n=1) ^∞  (((−1)^n )/n) [(1/(2n−1))x^(2n−1) ]_0 ^1   =−Σ_(n=1) ^∞  (((−1)^n )/(n(2n−1))) =(π/2)−ln(2) ⇒Σ_(n=1) ^∞  (((−1)^n )/(n(2n−1))) =ln(2)−(π/2)
remarkwehaveln(1+u)=11+u=n=0(1)nunifu∣<1ln(1+u)=n=0(1)nn+1un+1=n=1(1)n1unn=n=1(1)nnunln(1+x2)=n=1(1)nnx2nln(1+x2)x2=n=1(1)nnx2n201ln(1+x2)x2dx=n=1(1)nn[12n1x2n1]01=n=1(1)nn(2n1)=π2ln(2)n=1(1)nn(2n1)=ln(2)π2

Leave a Reply

Your email address will not be published. Required fields are marked *