Question Number 142255 by gsk2684 last updated on 28/May/21

Answered by mindispower last updated on 28/May/21
![by part=[x(√(x^4 −5x^2 +4))]_0 ^1 −∫_0 ^1 ((2x^4 −5x^2 )/( (√(x^4 −5x^2 +4))))dx =−2∫_0 ^1 (√(x^4 −5x^2 +4))+∫_0 ^1 ((−5x^2 +8)/( (√(x^4 −5x^2 +4))))dx ∫_0 ^1 (√(x^4 +5x^2 +4))dx=(1/3)∫_0 ^1 ((−5x^2 +8)/( (√(x^4 −5x^2 +4))))dx x^4 −5x^2 +4=(1−x^2 )(4−x^2 ) (1/3)∫_0 ^1 ((5(4−x^2 )−12)/( (√(x^2 −5x^2 +4))))dx =(5/3)∫_0 ^1 ((√(4−x^2 ))/( (√(1−x^2 ))))dx−4∫_0 ^1 (dx/( (√((1−x^2 )(4−x^2 ))))) =((10)/3)∫_0 ^1 ((√(1−(1/4)x^2 ))/( (√(1−x^2 )))) −2∫_0 ^1 (dx/( (√((1−x^2 )(1−(x^2 /4)))))) E(k^2 )=∫_0 ^1 ((√(1−k^2 x^2 ))/( (√(1−x^2 ))))dx 2nd eleptic integral K(k^2 )=∫_0 ^1 (dx/( (√(1−x^2 .(√(1−k^2 x^2 )))))) 1 st kind eleptic integral we Get∫_0 ^1 (dx/( (√(x^4 −5x^2 +4))))= ((10)/3)E((1/4))−2K((1/4))](https://www.tinkutara.com/question/Q142257.png)
Commented by MJS_new last updated on 29/May/21

Commented by mindispower last updated on 29/May/21

Commented by gsk2684 last updated on 31/May/21
