Menu Close

find-the-value-of-0-2pi-dx-3-2sinx-cosx-




Question Number 67526 by mathmax by abdo last updated on 28/Aug/19
find the value of ∫_0 ^(2π)    (dx/(3+2sinx +cosx))
findthevalueof02πdx3+2sinx+cosx
Commented by mathmax by abdo last updated on 31/Aug/19
let I =∫_0 ^(2π)   (dx/(3+2sinx +cosx)) ⇒I =∫_0 ^π  (dx/(3+2sinx +cosx)) +∫_π ^(2π)  (dx/(3+2sinx +cosx))  =H +K  H =_(tan((x/2))=t)    ∫_0 ^∞      (1/(3+2((2t)/(1+t^2 )) +((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  =∫_0 ^∞   ((2dt)/(3+3t^2 +4t +1−t^2 )) =∫_0 ^∞   ((2dt)/(2t^2 +4t+4)) =∫_0 ^∞   (dt/(t^2  +2t +2))  Δ^′ =1−2 =−1<0 ⇒  H =∫_0 ^∞    (dt/(t^2  +2t+1 +1)) =∫_0 ^∞   (dt/((t+1)^2 +1)) =_(t+1 =α)    ∫_1 ^(+∞)  (dα/(1+α^2 ))  =[arctan(α)]_1 ^(+∞)  =(π/2)−(π/4) =(π/4)  K =_(x =π +t)    ∫_0 ^π      (dt/(3−2sint−cost)) =_(tan((t/2))=u)    ∫_0 ^∞     ((2du)/((1+u^2 )(3−2((2u)/(1+u^2 ))−((1−u^2 )/(1+u^2 )))))  =∫_0 ^∞     ((2du)/(3+3u^2 −4u−1+u^2 )) =∫_0 ^∞    ((2du)/(4u^2 −4u+2))  =∫_0 ^∞     (du/(2u^2 −2u +1)) =(1/2)∫_0 ^∞   (du/(u^2 −u +(1/2))) =(1/2)∫_0 ^∞    (du/((u−(1/2))^2 +(3/4)+(1/2)))  =(1/2)∫_0 ^∞    (du/((u−(1/2))^2 +(5/4))) =_(u−(1/2)=((√5)/2)α)    (1/2)×(4/5)∫_(−(1/( (√5)))) ^(+∞)     (1/(1+u^2 ))((√5)/2)dα  =(1/( (√5)))[arctanα]_(−(1/( (√5)))) ^(+∞)  =(1/( (√5))){(π/2) +arctan((1/( (√5))))} ⇒  I =(π/4) +(π/(2(√5))) +(1/( (√5))) arctan((1/( (√5)))).
letI=02πdx3+2sinx+cosxI=0πdx3+2sinx+cosx+π2πdx3+2sinx+cosx=H+KH=tan(x2)=t013+22t1+t2+1t21+t22dt1+t2=02dt3+3t2+4t+1t2=02dt2t2+4t+4=0dtt2+2t+2Δ=12=1<0H=0dtt2+2t+1+1=0dt(t+1)2+1=t+1=α1+dα1+α2=[arctan(α)]1+=π2π4=π4K=x=π+t0πdt32sintcost=tan(t2)=u02du(1+u2)(322u1+u21u21+u2)=02du3+3u24u1+u2=02du4u24u+2=0du2u22u+1=120duu2u+12=120du(u12)2+34+12=120du(u12)2+54=u12=52α12×4515+11+u252dα=15[arctanα]15+=15{π2+arctan(15)}I=π4+π25+15arctan(15).

Leave a Reply

Your email address will not be published. Required fields are marked *