Menu Close

find-the-value-of-0-x-ch-x-dx-




Question Number 66786 by mathmax by abdo last updated on 19/Aug/19
find the value of ∫_0 ^∞  (x/(ch(x)))dx
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{x}}{{ch}\left({x}\right)}{dx} \\ $$
Commented by mathmax by abdo last updated on 20/Aug/19
let I =∫_0 ^∞  (x/(ch(x)))dx ⇒ I =∫_0 ^∞ ((2x)/(e^x  +e^(−x) ))dx =∫_0 ^∞  ((2xe^(−x) )/(1+e^(−2x) ))dx  =2 ∫_0 ^∞   x e^(−x) (Σ_(n=0) ^∞ (−1)^n e^(−2nx) )dx  =2Σ_(n=0) ^∞ (−1)^n  ∫_0 ^∞ x e^(−(2n+1)x) dx =_((2n+1)x=t)    2Σ_(n=0) ^∞ (−1)^n ∫_0 ^∞ (t/(2n+1))e^(−t) (dt/(2n+1))  =2 Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))∫_0 ^∞  t e^(−t)  dt    but ∫_0 ^∞  t e^(−t)  dt =Γ(2)=1!=1 ⇒  I =2 Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))   ....be continued...
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{x}}{{ch}\left({x}\right)}{dx}\:\Rightarrow\:{I}\:=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{x}}{{e}^{{x}} \:+{e}^{−{x}} }{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}{xe}^{−{x}} }{\mathrm{1}+{e}^{−\mathrm{2}{x}} }{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:{x}\:{e}^{−{x}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {e}^{−\mathrm{2}{nx}} \right){dx} \\ $$$$=\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\infty} {x}\:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} {dx}\:=_{\left(\mathrm{2}{n}+\mathrm{1}\right){x}={t}} \:\:\:\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\infty} \frac{{t}}{\mathrm{2}{n}+\mathrm{1}}{e}^{−{t}} \frac{{dt}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−{t}} \:{dt}\:\:\:\:{but}\:\int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−{t}} \:{dt}\:=\Gamma\left(\mathrm{2}\right)=\mathrm{1}!=\mathrm{1}\:\Rightarrow \\ $$$${I}\:=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:….{be}\:{continued}… \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *