Menu Close

find-the-value-of-0-xlogx-1-x-3-2-dx-




Question Number 142426 by Mathspace last updated on 31/May/21
find the value of ∫_0 ^∞  ((xlogx)/((1+x^3 )^2 ))dx
findthevalueof0xlogx(1+x3)2dx
Answered by mindispower last updated on 01/Jun/21
x→(1/x)  =−∫_0 ^∞ ((x^3 ln(x)dx)/((1+x^3 )^2 ))  =−[−((xln(x))/(3(1+x^3 )))]_0 ^∞ +(1/3)∫_0 ^∞ (1/(1+x^3 ))dx+(1/3)∫_0 ^∞ ((ln(x))/(1+x^3 ))dx]  −(1/9)∫_0 ^∞ (t^((−2)/3) /(1+t))dt−(1/(27))∫_0 ^∞ ((t^(−(2/3)) ln(t))/(1+t))dt  β(x,y)=∫_0 ^∞ (t^(x−1) /((1+t)^(x+y) ))  −(1/9)β((1/3),(2/3))−(1/(27))β_x ((1/3),(2/3))  =−((2π)/(9(√3)))−(1/(27))β((1/3),(2/3))(Ψ(1)−Ψ((1/3)))  =−((2π)/(9(√3)))(1+(1/3)(−γ+γ+(π/(2(√3)))+(3/2)ln(3))  =−((2π)/(9(√3)))−(π^2 /(81))−((πln(3))/(9(√3)))
x1x=0x3ln(x)dx(1+x3)2=[xln(x)3(1+x3)]0+13011+x3dx+130ln(x)1+x3dx]190t231+tdt1270t23ln(t)1+tdtβ(x,y)=0tx1(1+t)x+y19β(13,23)127βx(13,23)=2π93127β(13,23)(Ψ(1)Ψ(13))=2π93(1+13(γ+γ+π23+32ln(3))=2π93π281πln(3)93

Leave a Reply

Your email address will not be published. Required fields are marked *