Menu Close

Find-the-value-of-a-2-b-2-for-a-b-real-number-such-that-a-b-1-a-1-b-1-a-and-b-a-1-b-1-a-1-b-




Question Number 136039 by liberty last updated on 18/Mar/21
Find the value of a^2 +b^2    for a,b real number such that   a = b+(1/(a+(1/(b+(1/(a+...))))))  and b = a−(1/(b+(1/(a−(1/(b+...))))))
Findthevalueofa2+b2fora,brealnumbersuchthata=b+1a+1b+1a+andb=a1b+1a1b+
Commented by MJS_new last updated on 18/Mar/21
a^2 +b^2 =(√5)
a2+b2=5
Commented by liberty last updated on 18/Mar/21
how sir?
howsir?
Answered by EDWIN88 last updated on 18/Mar/21
(1) a = b+(1/(a+(1/a))) ; a = b+(a/(a^2 +1))   a(a^2 +1) = b(a^2 +1)+a ; a^3  = a^2 b+b   ⇒b = (a^3 /(a^2 +1))   (2)b = a−(1/(b+(1/b))) ; b = a−(b/(b^2 +1))   b^3 +b = a(b^2 +1)−b ; b^3 +2b = a(b^2 +1)  ⇒ a = ((b^3 +2b)/(b^2 +1))=((b(b^2 +2))/(b^2 +1))  ⇒a = (a^3 /(a^2 +1)).(((b^2 +2)/(b^2 +1))) ⇒ (a^2 +1)(b^2 +1)=a^2 (b^2 +2)  ⇒a^2 b^2 +a^2 +b^2 +1 = a^2 b^2 +2a^2   ⇒a^2 −b^2  = 1
(1)a=b+1a+1a;a=b+aa2+1a(a2+1)=b(a2+1)+a;a3=a2b+bb=a3a2+1(2)b=a1b+1b;b=abb2+1b3+b=a(b2+1)b;b3+2b=a(b2+1)a=b3+2bb2+1=b(b2+2)b2+1a=a3a2+1.(b2+2b2+1)(a2+1)(b2+1)=a2(b2+2)a2b2+a2+b2+1=a2b2+2a2a2b2=1
Answered by MJS_new last updated on 18/Mar/21
(1) a=b+(1/(a+(1/a))) ⇔ b=(a^3 /(a^2 +1))  (2) b=a−(1/(b+(1/b))) ⇔ a(b^2 +1)−b(b^2 +2)=0  insert (1) into (2)  −((a(a^4 −a^2 −1))/((a^2 +1)^3 ))=0  a=0 [rejected]  a^4 −a^2 −1=0  (a^2 )^2 −(a^2 )−1=0  a^2 =((1−(√5))/2) [rejected because a∈R] ∨ a^2 =((1+(√5))/2)  b^2 =(a^6 /((a^2 +1)^2 ))=−((1−(√5))/2)  a^2 +b^2 =(√5)
(1)a=b+1a+1ab=a3a2+1(2)b=a1b+1ba(b2+1)b(b2+2)=0insert(1)into(2)a(a4a21)(a2+1)3=0a=0[rejected]a4a21=0(a2)2(a2)1=0a2=152[rejectedbecauseaR]a2=1+52b2=a6(a2+1)2=152a2+b2=5
Answered by mr W last updated on 18/Mar/21
from (1): a=b+(1/(a+(1/a)))=b+(a/(a^2 +1))  a−b=(a/(a^2 +1))=k say  ka^2 −a+k=0  a^2 =(a/(a−b))−1    from (2): b=a−(1/(b+(1/b)))=a−(b/(b^2 +1))  a−b=(b/(b^2 +1))=k  kb^2 −b+k=0  b^2 =(b/(a−b))−1    a, b are roots of kx^2 −x+k=0  a+b=(1/k)  ab=1  since a−b=k  (a+b)^2 −4ab=k^2   (1/k^2 )−4=k^2   k^4 +4k^2 −1=0  k^2 =−2+(√5) >0   (−2−(√5) <0  rejected)  k^2 +2=(√5)    a^2 +b^2 =((a+b)/(a−b))−2=(1/k^2 )−2=k^2 +2=(√5) ✓    a^2 −b^2 =(a+b)(a−b)=(1/k)×k=1 ✓
from(1):a=b+1a+1a=b+aa2+1ab=aa2+1=ksayka2a+k=0a2=aab1from(2):b=a1b+1b=abb2+1ab=bb2+1=kkb2b+k=0b2=bab1a,barerootsofkx2x+k=0a+b=1kab=1sinceab=k(a+b)24ab=k21k24=k2k4+4k21=0k2=2+5>0(25<0rejected)k2+2=5a2+b2=a+bab2=1k22=k2+2=5a2b2=(a+b)(ab)=1k×k=1
Answered by ajfour last updated on 19/Mar/21
a−b=(1/(a+(1/a)))=(1/(b+(1/b)))  clearly  a≠b  but   a+(1/a)=b+(1/b)  ⇒  ab=1  now   (a−(1/a))(a+(1/a))=1  ⇒   a^2 −(1/a^2 )=1  a^4 −a^2 −1=0  a^2 =(((√5)+1)/2)  b^2 =(1/a^2 )=(2/( (√5)+1))=(((√5)−1)/2)  a^2 +b^2 =(√5)
ab=1a+1a=1b+1bclearlyabbuta+1a=b+1bab=1now(a1a)(a+1a)=1a21a2=1a4a21=0a2=5+12b2=1a2=25+1=512a2+b2=5

Leave a Reply

Your email address will not be published. Required fields are marked *