Menu Close

find-the-value-of-a-b-and-c-a-b-c-4-a-2-b-2-c-2-66-a-3-b-3-c-3-280-




Question Number 12261 by frank ntulah last updated on 17/Apr/17
find the value of a b and c   a+b+c=4  a^2 +b^2 +c^2 =66  a^3 +b^3 +c^3 =280
$${find}\:{the}\:{value}\:{of}\:{a}\:{b}\:{and}\:{c} \\ $$$$\:{a}+{b}+{c}=\mathrm{4} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{66} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{280} \\ $$
Answered by mrW1 last updated on 17/Apr/17
(a+b+c)^2 =a^2 +b^2 +c^2 +2ab+2bc+2ca=4^2 =16  ⇒ab+bc+ca=((16−66)/2)=−25  (a+b+c)^3 =a^3 +b^3 +c^3 +6abc+3(a^2 b+a^2 c+b^2 a+b^2 c+c^2 a+c^2 b)  =a^3 +b^3 +c^3 +3(a+b+c)(ab+bc+ca)−3abc  =280+3×4×(−25)−3abc=4^3 =64  ⇒abc=((280+3×4×(−25)−64)/3)=−28    a,b,c are the roots of following cubic eqn.  x^3 −(a+b+c)x^2 +(ab+bc+ca)x−abc=0  ⇒x^3 −4x^2 −25x+28=0  ⇒(x−1)(x+4)(x−7)=0  ⇒x_1 =−4, x_2 =1, x_3 =7  possible solutions for a,b,c are:   ((a),(b),(c) )= (((−4)),(1),(7) )   ((a),(b),(c) )= (((−4)),(7),(1) )   ((a),(b),(c) )= ((1),((−4)),(7) )   ((a),(b),(c) )= ((1),(7),((−4)) )   ((a),(b),(c) )= ((7),((−4)),(1) )   ((a),(b),(c) )= ((7),(1),((−4)) )
$$\left({a}+{b}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{2}{bc}+\mathrm{2}{ca}=\mathrm{4}^{\mathrm{2}} =\mathrm{16} \\ $$$$\Rightarrow{ab}+{bc}+{ca}=\frac{\mathrm{16}−\mathrm{66}}{\mathrm{2}}=−\mathrm{25} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +\mathrm{6}{abc}+\mathrm{3}\left({a}^{\mathrm{2}} {b}+{a}^{\mathrm{2}} {c}+{b}^{\mathrm{2}} {a}+{b}^{\mathrm{2}} {c}+{c}^{\mathrm{2}} {a}+{c}^{\mathrm{2}} {b}\right) \\ $$$$={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +\mathrm{3}\left({a}+{b}+{c}\right)\left({ab}+{bc}+{ca}\right)−\mathrm{3}{abc} \\ $$$$=\mathrm{280}+\mathrm{3}×\mathrm{4}×\left(−\mathrm{25}\right)−\mathrm{3}{abc}=\mathrm{4}^{\mathrm{3}} =\mathrm{64} \\ $$$$\Rightarrow{abc}=\frac{\mathrm{280}+\mathrm{3}×\mathrm{4}×\left(−\mathrm{25}\right)−\mathrm{64}}{\mathrm{3}}=−\mathrm{28} \\ $$$$ \\ $$$${a},{b},{c}\:{are}\:{the}\:{roots}\:{of}\:{following}\:{cubic}\:{eqn}. \\ $$$${x}^{\mathrm{3}} −\left({a}+{b}+{c}\right){x}^{\mathrm{2}} +\left({ab}+{bc}+{ca}\right){x}−{abc}=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} −\mathrm{25}{x}+\mathrm{28}=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\mathrm{1}\right)\left({x}+\mathrm{4}\right)\left({x}−\mathrm{7}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}_{\mathrm{1}} =−\mathrm{4},\:{x}_{\mathrm{2}} =\mathrm{1},\:{x}_{\mathrm{3}} =\mathrm{7} \\ $$$${possible}\:{solutions}\:{for}\:{a},{b},{c}\:{are}: \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\\{{c}}\end{pmatrix}=\begin{pmatrix}{−\mathrm{4}}\\{\mathrm{1}}\\{\mathrm{7}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\\{{c}}\end{pmatrix}=\begin{pmatrix}{−\mathrm{4}}\\{\mathrm{7}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\\{{c}}\end{pmatrix}=\begin{pmatrix}{\mathrm{1}}\\{−\mathrm{4}}\\{\mathrm{7}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\\{{c}}\end{pmatrix}=\begin{pmatrix}{\mathrm{1}}\\{\mathrm{7}}\\{−\mathrm{4}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\\{{c}}\end{pmatrix}=\begin{pmatrix}{\mathrm{7}}\\{−\mathrm{4}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\\{{c}}\end{pmatrix}=\begin{pmatrix}{\mathrm{7}}\\{\mathrm{1}}\\{−\mathrm{4}}\end{pmatrix} \\ $$
Commented by frank ntulah last updated on 17/Apr/17
thank you sir you make me happy
$${thank}\:{you}\:{sir}\:{you}\:{make}\:{me}\:{happy} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by tawa last updated on 17/Apr/17
Yes sir, check line 4 ......    a^3  + b^3  + c^3  .....
$$\mathrm{Yes}\:\mathrm{sir},\:\mathrm{check}\:\mathrm{line}\:\mathrm{4}\:……\:\:\:\:\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{c}^{\mathrm{3}} \:….. \\ $$
Commented by mrW1 last updated on 17/Apr/17
Thanks. You are right. I have corrected.
$${Thanks}.\:{You}\:{are}\:{right}.\:{I}\:{have}\:{corrected}. \\ $$
Commented by tawa last updated on 17/Apr/17
Yes sir. Thank you. i always follow your steps very well. God bless you sir.
$$\mathrm{Yes}\:\mathrm{sir}.\:\mathrm{Thank}\:\mathrm{you}.\:\mathrm{i}\:\mathrm{always}\:\mathrm{follow}\:\mathrm{your}\:\mathrm{steps}\:\mathrm{very}\:\mathrm{well}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *