Menu Close

find-the-value-of-arctan-3x-2-x-2-4-dx-




Question Number 78134 by msup trace by abdo last updated on 14/Jan/20
find the value of  ∫_(−∞) ^(+∞)  ((arctan(3x^2 ))/(x^2 +4))dx
$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left(\mathrm{3}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +\mathrm{4}}{dx} \\ $$
Commented by mathmax by abdo last updated on 14/Jan/20
let A =∫_(−∞) ^(+∞)  ((arctan(3x^2 ))/(x^2  +4))dx  and W(z)=((arctan(3z^2 ))/(z^2  +4))  W(z)=((arctan(3z^2 ))/((z−2i)(z+2i))) ⇒∫_(−∞) ^(+∞ ) W(z)dz =2iπ Res(W,2i)  =2iπ×((∣arctan(3(2i)^2 )∣)/(4i)) =(π/2)∣arctan(−12)∣ =(π/2)arctan(12) ⇒  A =(π/2)arctan(12)
$${let}\:{A}\:=\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left(\mathrm{3}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx}\:\:{and}\:{W}\left({z}\right)=\frac{{arctan}\left(\mathrm{3}{z}^{\mathrm{2}} \right)}{{z}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$${W}\left({z}\right)=\frac{{arctan}\left(\mathrm{3}{z}^{\mathrm{2}} \right)}{\left({z}−\mathrm{2}{i}\right)\left({z}+\mathrm{2}{i}\right)}\:\Rightarrow\int_{−\infty} ^{+\infty\:} {W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},\mathrm{2}{i}\right) \\ $$$$=\mathrm{2}{i}\pi×\frac{\mid{arctan}\left(\mathrm{3}\left(\mathrm{2}{i}\right)^{\mathrm{2}} \right)\mid}{\mathrm{4}{i}}\:=\frac{\pi}{\mathrm{2}}\mid{arctan}\left(−\mathrm{12}\right)\mid\:=\frac{\pi}{\mathrm{2}}{arctan}\left(\mathrm{12}\right)\:\Rightarrow \\ $$$${A}\:=\frac{\pi}{\mathrm{2}}{arctan}\left(\mathrm{12}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *