Menu Close

find-the-value-of-dt-t-2-2t-2-3-2-




Question Number 66345 by mathmax by abdo last updated on 12/Aug/19
find the value of ∫_(−∞) ^(+∞)    (dt/((t^2 −2t +2)^(3/2) ))
$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Commented by mathmax by abdo last updated on 13/Aug/19
let I =∫_(−∞) ^(+∞)   (dt/((t^2 −2t+2)^(3/2) )) ⇒I =∫_(−∞) ^(+∞)  (dt/({(t−1)^2  +1}^(3/2) ))  =_(t−1 =u)    ∫_(−∞) ^(+∞)  (du/((1+u^2 )^(3/2) ))  changement u =tanθ give  I =∫_(−(π/2)) ^(π/2)   (((1+tan^2 θ)dθ)/((1+tan^2 θ)^(3/2) )) =∫_(−(π/2)) ^(π/2)   (dθ/( (√(1+tan^2 θ)))) =∫_(−(π/2)) ^(π/2)  cosθ dθ  =[sinθ]_(−(π/2)) ^(π/2)  =2 .
$${let}\:{I}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\Rightarrow{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{dt}}{\left\{\left({t}−\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{1}\right\}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$=_{{t}−\mathrm{1}\:={u}} \:\:\:\int_{−\infty} ^{+\infty} \:\frac{{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{changement}\:{u}\:={tan}\theta\:{give} \\ $$$${I}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta}{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{d}\theta}{\:\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\theta\:{d}\theta \\ $$$$=\left[{sin}\theta\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:=\mathrm{2}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *