Menu Close

find-the-value-of-lim-1-cosx-tan-2x-x-




Question Number 69174 by Aditya789 last updated on 21/Sep/19
find the value of   lim((1+cosx)/(tan^(2x) ))  x−^� ⇈
findthevalueoflim1+cosxtan2xx^
Commented by Henri Boucatchou last updated on 21/Sep/19
Note  that  there  are  some  failures  in  your  edition
Notethattherearesomefailuresinyouredition
Commented by Rasheed.Sindhi last updated on 21/Sep/19
Do you mean:  lim_(x→π) ((1+cosx)/(  tan(2x)))  Or you mean:  lim_(x→π) ((1+cosx)/(  tan^2 x))                ?
Doyoumean:limxπ1+cosxtan(2x)Oryoumean:limxπ1+cosxtan2x?
Commented by mathmax by abdo last updated on 21/Sep/19
if you mean lim_(x→π)   ((1+cosx)/(tan(2x)))  we do the changement x=π +t ⇒  ((1+cosx)/(tan(2x))) =((1+cos(π+t))/(tan(2π+2t))) =((1−cost)/(tan(2t)))  and x→π ⇒t→0 so  ((1−cost)/(tan(2t))) ∼((t^2 /2)/(2t)) =(t/4) →0 (t→0) so lim_(x→π)    ((1+cosx)/(tan(2x))) =0  if you mean lim_(x→π)     ((1+cosx)/(tan^2 x))  chang.x=π +t give  ((1+cosx)/(tan^2 x)) =((1−cost)/(tan^2 (t))) ∼(t^2 /2)×(1/t^2 ) =(1/2) ⇒lim_(x→π)    ((1+cosx)/(tan^2 x)) =(1/2)
ifyoumeanlimxπ1+cosxtan(2x)wedothechangementx=π+t1+cosxtan(2x)=1+cos(π+t)tan(2π+2t)=1costtan(2t)andxπt0so1costtan(2t)t222t=t40(t0)solimxπ1+cosxtan(2x)=0ifyoumeanlimxπ1+cosxtan2xchang.x=π+tgive1+cosxtan2x=1costtan2(t)t22×1t2=12limxπ1+cosxtan2x=12

Leave a Reply

Your email address will not be published. Required fields are marked *