Menu Close

find-the-value-of-n-1-1-n-n-1-n-3-




Question Number 67013 by mathmax by abdo last updated on 21/Aug/19
find the value of Σ_(n=1) ^∞    (((−1)^n )/((n+1)n^3 ))
findthevalueofn=1(1)n(n+1)n3
Commented by mathmax by abdo last updated on 24/Aug/19
let S =Σ_(n=1) ^∞  (((−1)^n )/((n+1)n^3 )) we have S =lim_(n→+∞)  S_n  with   S_n =Σ_(k=1) ^n  (((−1)^k )/((k+1)k^3 ))  let  first decompose F(x) =(1/((x+1)x^3 ))  F(x)=(a/(x+1))+(b/x) +(c/x^2 ) +(d/x^3 )  we have a =−1  d =1 ⇒F(x) =−(1/(x+1)) +(b/x)+(c/x^2 ) +(1/x^3 )  lim_(x→+∞) xF(x) =0 =−1+b ⇒b=1 ⇒F(x)=−(1/(x+1))+(1/x) +(c/x^2 ) +(1/x^3 )  F(1)=(1/2) =−(1/2) +2+c ⇒1 =2+c ⇒c =−1 ⇒  F(x)=−(1/(x+1))+(1/x)−(1/x^2 )+(1/x^3 ) ⇒S_n =Σ_(k=1) ^n  (−1)^k  F(k)  =−Σ_(k=1) ^n  (((−1)^k )/(k+1)) +Σ_(k=1) ^n  (((−1)^k )/k)−Σ_(k=1) ^n  (((−1)^k )/k^2 ) +Σ_(k=1) ^n  (((−1)^k )/k^3 )  but  Σ_(k=1) ^n  (((−1)^k )/(k+1)) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k) =−Σ_(k=2) ^(n+1)  (((−1)^k )/k)  =−(Σ_(k=1) ^(n+1)  (((−1)^k )/k)+1)=1−Σ_(k=1) ^(n+1)  (((−1)^k )/k) ⇒  S_n =−1 +Σ_(k=1) ^(n+1)  (((−1)^k )/k) +Σ_(k=1) ^∞  (((−1)^k )/k)−Σ_(k=1) ^n  (((−1)^k )/k^2 )+Σ_(k=1) ^n  (((−1)^k )/k^3 )  → −1+2Σ_(k=1) ^∞  (((−1)^k )/k) −Σ_(k=1) ^∞  (((−1)^k )/k^2 ) +Σ_(k=1) ^∞ (((−1)^k )/k^3 )  we have Σ_(k=1) ^∞  (((−1)^k )/k) =−ln(2)  Σ_(k=1) ^∞  (((−1)^k )/k^x ) =δ(x)=(2^(1−x) −1)ξ(x) ⇒  Σ_(k=1) ^∞  (((−1)^k )/k^2 ) =(2^(−1) −1)ξ(2) =−(1/2)×(π^2 /6) =−(π^2 /(12))  Σ_(k=1) ^∞   (((−1)^k )/k^3 ) =(2^(1−3) −1)ξ(3) =−(3/4)ξ(3) ⇒  S =lim_(n→+∞)  S_n =−1+2(−ln(2))+(π^2 /(12))−(3/4)ξ(3)  =(π^2 /(12))−1−2ln(2)−(3/4)ξ(3) .
letS=n=1(1)n(n+1)n3wehaveS=limn+SnwithSn=k=1n(1)k(k+1)k3letfirstdecomposeF(x)=1(x+1)x3F(x)=ax+1+bx+cx2+dx3wehavea=1d=1F(x)=1x+1+bx+cx2+1x3limx+xF(x)=0=1+bb=1F(x)=1x+1+1x+cx2+1x3F(1)=12=12+2+c1=2+cc=1F(x)=1x+1+1x1x2+1x3Sn=k=1n(1)kF(k)=k=1n(1)kk+1+k=1n(1)kkk=1n(1)kk2+k=1n(1)kk3butk=1n(1)kk+1=k=2n+1(1)k1k=k=2n+1(1)kk=(k=1n+1(1)kk+1)=1k=1n+1(1)kkSn=1+k=1n+1(1)kk+k=1(1)kkk=1n(1)kk2+k=1n(1)kk31+2k=1(1)kkk=1(1)kk2+k=1(1)kk3wehavek=1(1)kk=ln(2)k=1(1)kkx=δ(x)=(21x1)ξ(x)k=1(1)kk2=(211)ξ(2)=12×π26=π212k=1(1)kk3=(2131)ξ(3)=34ξ(3)S=limn+Sn=1+2(ln(2))+π21234ξ(3)=π21212ln(2)34ξ(3).

Leave a Reply

Your email address will not be published. Required fields are marked *