find-the-value-of-n-1-1-n-n-1-n-3- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 67013 by mathmax by abdo last updated on 21/Aug/19 findthevalueof∑n=1∞(−1)n(n+1)n3 Commented by mathmax by abdo last updated on 24/Aug/19 letS=∑n=1∞(−1)n(n+1)n3wehaveS=limn→+∞SnwithSn=∑k=1n(−1)k(k+1)k3letfirstdecomposeF(x)=1(x+1)x3F(x)=ax+1+bx+cx2+dx3wehavea=−1d=1⇒F(x)=−1x+1+bx+cx2+1x3limx→+∞xF(x)=0=−1+b⇒b=1⇒F(x)=−1x+1+1x+cx2+1x3F(1)=12=−12+2+c⇒1=2+c⇒c=−1⇒F(x)=−1x+1+1x−1x2+1x3⇒Sn=∑k=1n(−1)kF(k)=−∑k=1n(−1)kk+1+∑k=1n(−1)kk−∑k=1n(−1)kk2+∑k=1n(−1)kk3but∑k=1n(−1)kk+1=∑k=2n+1(−1)k−1k=−∑k=2n+1(−1)kk=−(∑k=1n+1(−1)kk+1)=1−∑k=1n+1(−1)kk⇒Sn=−1+∑k=1n+1(−1)kk+∑k=1∞(−1)kk−∑k=1n(−1)kk2+∑k=1n(−1)kk3→−1+2∑k=1∞(−1)kk−∑k=1∞(−1)kk2+∑k=1∞(−1)kk3wehave∑k=1∞(−1)kk=−ln(2)∑k=1∞(−1)kkx=δ(x)=(21−x−1)ξ(x)⇒∑k=1∞(−1)kk2=(2−1−1)ξ(2)=−12×π26=−π212∑k=1∞(−1)kk3=(21−3−1)ξ(3)=−34ξ(3)⇒S=limn→+∞Sn=−1+2(−ln(2))+π212−34ξ(3)=π212−1−2ln(2)−34ξ(3). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-U-n-1-arctan-n-x-x-2-dx-Next Next post: If-a-1-then-lim-x-a-2-3x-5-4x-2-3x-1-x-2-8x-2-a-1-b-4-5-c-3-5-d-2-5-e-1-5- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.