Menu Close

find-the-value-of-n-1-1-n-n-2-n-1-n-2-n-3-




Question Number 143254 by Mathspace last updated on 12/Jun/21
find the value of Σ_(n=1) ^∞  (((−1)^n )/(n^2 (n+1)(n+2)(n+3)))
findthevalueofn=1(1)nn2(n+1)(n+2)(n+3)
Answered by Olaf_Thorendsen last updated on 12/Jun/21
R(n) = (1/(n^2 (n+1)(n+2)(n+3)))  R(n) = (1/(6n^2 ))−((11)/(36n))+(1/(2(n+1)))−(1/(4(n+2)))+(1/(18(n+3)))  Let = A_n  = Σ_(n=1) ^∞ (((−1)^n )/(n+1)) = ln2  Let = B_n  = Σ_(n=1) ^∞ (((−1)^n )/n^2 ) = −(π^2 /(12))  Let = S_n  = Σ_(n=1) ^∞ (−1)^n R(n)  S_n  = Σ_(n=1) ^∞  (((−1)^n )/(6n^2 ))−Σ_(n=1) ^∞ ((11(−1)^n )/(36n))+Σ_(n=1) ^∞ (((−1)^n )/(2(n+1)))  −Σ_(n=1) ^∞ (((−1)^n )/(4(n+2)))+Σ_(n=1) ^∞ (((−1)^n )/(18(n+3)))  S_n  = (1/6)B_n −((11)/(36))[−1−A_n ]+(1/2)A_n   −(1/4)[−(1/2)−A_n ]+(1/(18))[(1/2)−(1/3)+A_n ]  S_n  = ((11)/(36))+(1/8)+(1/(36))−(1/(54))+(1/6)B_n   +(((11)/(36))+(1/2)+(1/4)+(1/(18)))A_n   S_n  = ((95)/(216))+((10)/9)A_n +(1/6)B_n   S_n  = ((95)/(216))+((10)/9)ln2+(1/6)(−(π^2 /(12)))  S_n  = ((95)/(216))+((10)/9)ln2−(π^2 /(72))
R(n)=1n2(n+1)(n+2)(n+3)R(n)=16n21136n+12(n+1)14(n+2)+118(n+3)Let=An=n=1(1)nn+1=ln2Let=Bn=n=1(1)nn2=π212Let=Sn=n=1(1)nR(n)Sn=n=1(1)n6n2n=111(1)n36n+n=1(1)n2(n+1)n=1(1)n4(n+2)+n=1(1)n18(n+3)Sn=16Bn1136[1An]+12An14[12An]+118[1213+An]Sn=1136+18+136154+16Bn+(1136+12+14+118)AnSn=95216+109An+16BnSn=95216+109ln2+16(π212)Sn=95216+109ln2π272

Leave a Reply

Your email address will not be published. Required fields are marked *