Menu Close

find-the-value-of-n-2-n-n-1-2-n-1-3-




Question Number 65674 by mathmax by abdo last updated on 01/Aug/19
find the value of Σ_(n=2) ^∞  (n/((n+1)^2 (n−1)^3 ))
findthevalueofn=2n(n+1)2(n1)3
Commented by mathmax by abdo last updated on 04/Aug/19
let S =Σ_(n=2) ^∞  (n/((n+1)^2 (n−1)^3 )) ⇒S =Σ_(n=1) ^∞ ((n+1)/((n+2)^2 n^3 ))  let decompose F(x) =((x+1)/(x^3 (x+2)^2 )) ⇒  F(x) =(a/x) +(b/x^2 ) +(c/x^3 ) +(d/(x+2)) +(e/((x+2)^2 ))  c =lim_(x→0) x^3  F(x) =(1/4)  e =lim_(x→−2) (x+2)^2 F(x) =((−1)/(−8))=(1/8) ⇒  F(x) =(a/x) +(b/x^2 ) +(1/(4x^3 )) +(d/(x+2)) +(1/(8(x+2)^2 ))  lim_(x→+∞) xF(x) =0 =a+d ⇒d =−a ⇒  F(x) =(a/x) +(b/x^2 ) +(1/(4x^3 ))−(a/(x+2)) +(1/(8(x+2)^2 ))  F(1) =(2/9) =a+b+(1/4)−(a/3) +(1/(72)) =(2/3)a +b +(1/(72)) ⇒  2 =6a+9b +(1/8) ⇒6a+9b =2−(1/8) =((15)/8)  F(−1) =0 =−a+b−(1/4)−a +(1/8) =−2a+b−(1/8) ⇒  −2a+b =(1/8) ⇒b =2a+(1/8) ⇒6a+9(2a+(1/8))=((15)/8) ⇒  24a +(9/8) =((15)/8) ⇒24a=(6/8) =(3/4) ⇒a =(3/(4.8.3)) =(1/(32))  b =(1/(16))+(1/8) =(3/(16)) ⇒F(x) =(1/(32x)) +(3/(16x^2 )) +(1/(4x^3 )) −(1/(32(x+2))) +(1/(8(x+2)^2 ))  S_n  =Σ_(k=1) ^n  F(k) =(1/(32))Σ_(k=1) ^n  (1/k) +(3/(16)) Σ_(k=1) ^n  (1/k^2 ) +(1/4)Σ_(k=1) ^n  (1/k^3 )  −(1/(32))Σ_(k=1) ^n  (1/(k+2)) +(1/8)Σ_(k=1) ^n  (1/((x+2)^2 ))  Σ_(k=1) ^n  (1/(k+2)) =Σ_(k=3) ^(n+2)  (1/k) =Σ_(k=1) ^n  (1/k)−(3/2) +(1/(n+1)) +(1/(n+2)) ⇒  (1/(32))Σ_(k=1) ^n  (1/k) −(1/(32))Σ_(k=1) ^n  (1/(k+2)) =−(1/(32))(−(3/2) +(1/(n+1)) +(1/(n+2)))→(3/(64)) ⇒  Σ_(k=1) ^n  (1/((x+2)^2 )) =Σ_(k=3) ^(n+2)  (1/k^2 ) =ξ_n (2)+(1/((n+1)^2 )) +(1/((n+2)^2 ))−1−(1/4)  →ξ(2)−(5/4) ⇒ S =lim_(n→+∞)  S_n   =(3/(64)) +(3/(16))ξ(2) +(1/4)ξ(3) +(1/8){ξ(2)−(5/4)}  =(3/(64)) +(5/(16)) (π^2 /6) +(1/4)ξ(3)−(5/(32)) =−(7/(64)) +((5π^2 )/(96)) +(1/4)ξ(3)
letS=n=2n(n+1)2(n1)3S=n=1n+1(n+2)2n3letdecomposeF(x)=x+1x3(x+2)2F(x)=ax+bx2+cx3+dx+2+e(x+2)2c=limx0x3F(x)=14e=limx2(x+2)2F(x)=18=18F(x)=ax+bx2+14x3+dx+2+18(x+2)2limx+xF(x)=0=a+dd=aF(x)=ax+bx2+14x3ax+2+18(x+2)2F(1)=29=a+b+14a3+172=23a+b+1722=6a+9b+186a+9b=218=158F(1)=0=a+b14a+18=2a+b182a+b=18b=2a+186a+9(2a+18)=15824a+98=15824a=68=34a=34.8.3=132b=116+18=316F(x)=132x+316x2+14x3132(x+2)+18(x+2)2Sn=k=1nF(k)=132k=1n1k+316k=1n1k2+14k=1n1k3132k=1n1k+2+18k=1n1(x+2)2k=1n1k+2=k=3n+21k=k=1n1k32+1n+1+1n+2132k=1n1k132k=1n1k+2=132(32+1n+1+1n+2)364k=1n1(x+2)2=k=3n+21k2=ξn(2)+1(n+1)2+1(n+2)2114ξ(2)54S=limn+Sn=364+316ξ(2)+14ξ(3)+18{ξ(2)54}=364+516π26+14ξ(3)532=764+5π296+14ξ(3)