find-the-value-of-n-2-n-n-1-2-n-1-3- Tinku Tara June 3, 2023 Relation and Functions FacebookTweetPin Question Number 65674 by mathmax by abdo last updated on 01/Aug/19 findthevalueof∑n=2∞n(n+1)2(n−1)3 Commented by mathmax by abdo last updated on 04/Aug/19 letS=∑n=2∞n(n+1)2(n−1)3⇒S=∑n=1∞n+1(n+2)2n3letdecomposeF(x)=x+1x3(x+2)2⇒F(x)=ax+bx2+cx3+dx+2+e(x+2)2c=limx→0x3F(x)=14e=limx→−2(x+2)2F(x)=−1−8=18⇒F(x)=ax+bx2+14x3+dx+2+18(x+2)2limx→+∞xF(x)=0=a+d⇒d=−a⇒F(x)=ax+bx2+14x3−ax+2+18(x+2)2F(1)=29=a+b+14−a3+172=23a+b+172⇒2=6a+9b+18⇒6a+9b=2−18=158F(−1)=0=−a+b−14−a+18=−2a+b−18⇒−2a+b=18⇒b=2a+18⇒6a+9(2a+18)=158⇒24a+98=158⇒24a=68=34⇒a=34.8.3=132b=116+18=316⇒F(x)=132x+316x2+14x3−132(x+2)+18(x+2)2Sn=∑k=1nF(k)=132∑k=1n1k+316∑k=1n1k2+14∑k=1n1k3−132∑k=1n1k+2+18∑k=1n1(x+2)2∑k=1n1k+2=∑k=3n+21k=∑k=1n1k−32+1n+1+1n+2⇒132∑k=1n1k−132∑k=1n1k+2=−132(−32+1n+1+1n+2)→364⇒∑k=1n1(x+2)2=∑k=3n+21k2=ξn(2)+1(n+1)2+1(n+2)2−1−14→ξ(2)−54⇒S=limn→+∞Sn=364+316ξ(2)+14ξ(3)+18{ξ(2)−54}=364+516π26+14ξ(3)−532=−764+5π296+14ξ(3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: express-the-folowing-in-the0-6-bar-form-of-p-q-where-p-and-q-are-integers-and-q-is-not-0-0-6-Next Next post: 56546557-vb65-