Menu Close

Find-the-value-of-n-so-that-a-n-1-b-n-1-a-n-b-n-may-become-the-H-M-between-a-and-b-




Question Number 3615 by Rasheed Soomro last updated on 16/Dec/15
Find the value of n so that  ((a^(n+1) +b^(n+1) )/(a^n +b^n ))  may become the H.M. between  a   and    b.
Findthevalueofnsothatan+1+bn+1an+bnmaybecometheH.M.betweenaandb.
Commented by prakash jain last updated on 16/Dec/15
n=−1  ((1+1)/((1/a)+(1/b))) = ((2ab)/(a+b))
n=11+11a+1b=2aba+b
Answered by Yozzii last updated on 16/Dec/15
H.M, h=(1/((1/2)((1/a)+(1/b))))=((2ab)/(a+b)).  (a,b>0)  If h=((a^(n+1) +b^(n+1) )/(a^n +b^n ))  ⇒ ((a^(n+1) +b^(n+1) )/(a^n +b^n ))=((2ab)/(a+b))  ⇒(a+b)(a^(n+1) +b^(n+1) )=2ab(a^n +b^n )  a^(n+2) +abb^n +aba^n +b^(n+2) =2aba^n +2abb^n   a^(n+2) +b^(n+2) =aba^n +abb^n   a^(n+2) −ba^(n+1) −ab^(n+1) +b^(n+2) =0  a^(n+1) (a−b)−b^(n+1) (a−b)=0  (a^(n+1) −b^(n+1) )(a−b)=0  ⇒a=b or a^(n+1) =b^(n+1)  (∗).  If a≠b, (∗) is true iff n=−1.
H.M,h=112(1a+1b)=2aba+b.(a,b>0)Ifh=an+1+bn+1an+bnan+1+bn+1an+bn=2aba+b(a+b)(an+1+bn+1)=2ab(an+bn)an+2+abbn+aban+bn+2=2aban+2abbnan+2+bn+2=aban+abbnan+2ban+1abn+1+bn+2=0an+1(ab)bn+1(ab)=0(an+1bn+1)(ab)=0a=boran+1=bn+1().Ifab,()istrueiffn=1.
Commented by Rasheed Soomro last updated on 17/Dec/15
For b≠0   a^(n+1) =b^(n+1) ⇒(a^(n+1) /b^(n+1) )=1 ⇒( (a/b))^(n+1) =((a/b))^0   ⇒n+1=0⇒n=−1
Forb0an+1=bn+1an+1bn+1=1(ab)n+1=(ab)0n+1=0n=1

Leave a Reply

Your email address will not be published. Required fields are marked *