Menu Close

Find-the-value-of-x-if-x-x-6-729-




Question Number 5385 by sanusihammed last updated on 12/May/16
Find the value of x if     (√x^x^6  ) =  729
Findthevalueofxifxx6=729
Answered by prakash jain last updated on 12/May/16
(√x^x^6  ) =729=3^6   x^x^6  =3^(12)   x^x^6  =(3^2 )^6   x^x =9  If the question was cube root on LHS  (x^x^6  )^(1/3) =729  x^x^6  =3^(18)   x^x =3^3 ⇒x=3
xx6=729=36xx6=312xx6=(32)6xx=9IfthequestionwascuberootonLHSxx63=729xx6=318xx=33x=3
Commented by Rasheed Soomro last updated on 16/May/16
x^x^6  =^(?)  (x^x )^6   Or x^x^6  =x^((x^6 ))  ?  x^x^6  =(3^2 )^6 ⇒^(?) x^x =9
xx6=?(xx)6Orxx6=x(x6)?xx6=(32)6?xx=9
Answered by Rasheed Soomro last updated on 15/May/16
(√x^x^6  ) =  729⇒x^((1/2)x^6 ) =729  −−−−−−−−−−−−  To write 729 in the base of x  x^■ =729  ■log_3  x=log_3 729=6  ■=(6/(log_3  x))  729=x^(6/(log_3  x))   −−−−−−−−−  x^((1/2)x^6 ) = x^(6/(log_3  x)) ⇒(1/2)x^6 =(6/(log_3  x))  (1/2)x^6  log_3  x=6  x^6 log_3 x=12  x^6 =((3×4)/(log_3 x))=((log_3 27 ×4)/(log_3 x))=((log_3 27^4 )/(log_3 x))=log_x 27^4   x^6 =log_x 27^4   Continue
xx6=729x12x6=729Towrite729inthebaseofxx◼=729◼log3x=log3729=6◼=6log3x729=x6log3xx12x6=x6log3x12x6=6log3x12x6log3x=6x6log3x=12x6=3×4log3x=log327×4log3x=log3274log3x=logx274x6=logx274Continue

Leave a Reply

Your email address will not be published. Required fields are marked *