Find-the-value-of-X-such-that-1-5-9-13-17-2021-X-mod1000- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 139737 by mathsuji last updated on 30/Apr/21 FindthevalueofXsuchthat:1⋅5⋅9⋅13⋅17⋅…⋅2021≡X(mod1000) Answered by mindispower last updated on 01/May/21 A=∏505k=0(1+4k)≡X[1000]1000=8.53k=2n⇒1+4k≡1[8]k=2n+1⇒1+4k≡5[8]∏505k=0(1+4k)≡∏252k=0(8k+1).∏252k=0(5+8k)≡∏252k=05[8]=5252[8]52=1[8]⇒5252≡1[8]⇒A≡1[8]1+4k=5s⇒5s−4k=1(s,k)=(1,1)solution⇒5(s−1)−4(k−1)=0⇒k=5l+1⇒1+4(5l+1)=5(4l+1)=1+4kl=0,l=1,l=2⇒5,45,25∈{1,5,9,13,17¯…..}⇒(1.5.9……2021)≡0[125]A≡0[125]A≡1[8]A=8k+1=125d125d−8k=1(d,k)=(5,78)solutionk=125m+78A≡8(125m+78)+1=1000m+625[1000]≡X[100]X=625 Commented by mathsuji last updated on 02/May/21 thankyouverymuchsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-8667Next Next post: Please-how-do-we-calculate-the-area-of-an-hexagon- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.