Menu Close

find-the-value-sin-13pi-6-cos-49pi-4-




Question Number 69458 by mhmd last updated on 23/Sep/19
find the value sin(−13π/6) , cos(49π/4)
$${find}\:{the}\:{value}\:{sin}\left(−\mathrm{13}\pi/\mathrm{6}\right)\:,\:{cos}\left(\mathrm{49}\pi/\mathrm{4}\right) \\ $$$$ \\ $$
Commented by kaivan.ahmadi last updated on 23/Sep/19
sin(−2π−(π/6))=sin(−(π/6))=−sin((π/6))=−(1/2)  cos(((49π)/4))=cos(12π+(π/4))=cos((π/4))=((√2)/2)
$${sin}\left(−\mathrm{2}\pi−\frac{\pi}{\mathrm{6}}\right)={sin}\left(−\frac{\pi}{\mathrm{6}}\right)=−{sin}\left(\frac{\pi}{\mathrm{6}}\right)=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${cos}\left(\frac{\mathrm{49}\pi}{\mathrm{4}}\right)={cos}\left(\mathrm{12}\pi+\frac{\pi}{\mathrm{4}}\right)={cos}\left(\frac{\pi}{\mathrm{4}}\right)=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *