Question Number 78332 by Lontum Hans last updated on 16/Jan/20
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{k}\:\mathrm{and}\:\mathrm{n}\:\mathrm{for}\:\mathrm{which}\:\mathrm{x}^{\mathrm{3}} \mathrm{and}\:\mathrm{higher}\:\mathrm{powers}\:\mathrm{of}\:\mathrm{x}\:\mathrm{are}\:\mathrm{negligeble} \\ $$$$\mathrm{given}\:\mathrm{that}\:\left(\mathrm{1}+\mathrm{kx}\right)^{\mathrm{n}} =\mathrm{1}+\mathrm{2x}+\mathrm{6x}^{\mathrm{2}} . \\ $$
Commented by mr W last updated on 16/Jan/20
$$\left(\mathrm{1}+{kx}\right)^{{n}} =\mathrm{1}+{nkx}+\frac{{n}\left({n}−\mathrm{1}\right){k}^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{2}}+{o}\left({x}^{\mathrm{3}} \right) \\ $$$${nk}=\mathrm{2} \\ $$$$\frac{{n}\left({n}−\mathrm{1}\right){k}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{6} \\ $$$$\Rightarrow{n}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{k}=−\mathrm{4} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}}}=\mathrm{1}+\mathrm{2}{x}+\mathrm{6}{x}^{\mathrm{2}} +{o}\left({x}^{\mathrm{3}} \right) \\ $$$$ \\ $$$${but}\:\mathrm{x}^{\mathrm{3}} \mathrm{and}\:\mathrm{higher}\:\mathrm{powers}\:\mathrm{of}\:\mathrm{x}\:\mathrm{are}\:\mathrm{negligeble} \\ $$$${only}\:{if}\:{x}\rightarrow\mathrm{0}. \\ $$
Commented by mr W last updated on 16/Jan/20