Menu Close

find-the-values-of-x-for-which-x-3-8-x-2-4-is-discontinuous-and-state-each-kinds-of-dicontinuity-




Question Number 12651 by okhemafrancis last updated on 28/Apr/17
find the values of x for which ((x^3 +8)/(x^2 −4 ))is discontinuous and state each kinds of dicontinuity
findthevaluesofxforwhichx3+8x24isdiscontinuousandstateeachkindsofdicontinuity
Answered by FilupS last updated on 28/Apr/17
f(x)=((x^3 +8)/(x^2 −4))  for f:x→R,   −∞≤x≤x   ⇔   x^2 −4≠0  ∴x^2 ≠4  x≠±2     for  x=−2  ⇒   ((x^3 +8)/(x^2 −4))  = ((−8+8)/(4−4))=(0/0)  L′Hospital Rule  lim_(x→−2) ((x^3 +8)/(x^2 −4))=lim_(x→−2) ((3x^2 )/(2x))=((2(−2)^2 )/2)=4     ∴x=−2 is a solution  i.e.  x≠+2        for x=+2  lim_(x→2^− ) f=−∞    and   lim_(x→2^+ ) f=+∞
f(x)=x3+8x24forf:xR,xxx240x24x±2forx=2x3+8x24=8+844=00LHospitalRulelimx2x3+8x24=limx23x22x=2(2)22=4x=2isasolutioni.e.x+2forx=+2limx2f=andlimx2+f=+

Leave a Reply

Your email address will not be published. Required fields are marked *