Question Number 74573 by Raxreedoroid last updated on 26/Nov/19
$$\mathrm{Find}\:\left(\mathrm{turn}\:\mathrm{it}\:\mathrm{into}\:\mathrm{non}-\mathrm{segma}\:\mathrm{expression}\right) \\ $$$$\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} +\mathrm{3}}{\mathrm{2}} \\ $$
Commented by mathmax by abdo last updated on 26/Nov/19
$${let}\:{S}\:=\mathrm{1}+\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{3}+\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}}\:=\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}}\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} \\ $$$$=\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}}\left({n}−\mathrm{1}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\left(\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} −\mathrm{1}\right) \\ $$$$=\frac{\mathrm{3}{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}}\:=\frac{\mathrm{3}{n}}{\mathrm{2}}\:−\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$=\frac{\mathrm{3}{n}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{4}}\:−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}} \\ $$
Answered by mind is power last updated on 26/Nov/19
$$\mathrm{1}+\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{2}}+\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$=\mathrm{1}+\frac{\left(−\mathrm{1}\right)}{\mathrm{2}}.\frac{−\mathrm{1}−\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{n}−\mathrm{1}\right) \\ $$$$=\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} +\mathrm{6n}−\mathrm{3}}{\mathrm{4}} \\ $$
Commented by Smail last updated on 26/Nov/19
$$\mathrm{1}−{x}^{{n}} =\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +…+{x}^{{n}−\mathrm{1}} \right) \\ $$$$\Leftrightarrow\frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}}=\mathrm{1}+{x}+{x}^{\mathrm{2}} +…+{x}^{{n}−\mathrm{1}} \\ $$$${Thus},\:\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{x}^{{k}} =\frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}} \\ $$
Commented by JDamian last updated on 26/Nov/19
$$\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{x}^{{k}} \:\:{is}\:{the}\:{sum}\:{of}\:{a}\:\boldsymbol{{geometric}}\:\boldsymbol{{progession}} \\ $$
Commented by Raxreedoroid last updated on 26/Nov/19
$$\mathrm{What}\:\mathrm{the}\:\mathrm{step}\:\mathrm{of}\:\mathrm{expanding}\:\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}}\:\mathrm{called}?\:\mathrm{or}\:\mathrm{how}\:\mathrm{it}\:\mathrm{was}\:\mathrm{done}? \\ $$