Menu Close

find-U-n-0-e-nx-2-log-2-e-x-dx-n-1-determine-nature-of-U-n-and-nU-n-




Question Number 142980 by mathmax by abdo last updated on 08/Jun/21
find U_n =∫_0 ^∞  e^(−nx^2 ) log(2+e^x )dx   (n≥1)  determine nature of Σ U_n  and Σ nU_n
$$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{nx}^{\mathrm{2}} } \mathrm{log}\left(\mathrm{2}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx}\:\:\:\left(\mathrm{n}\geqslant\mathrm{1}\right) \\ $$$$\mathrm{determine}\:\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \:\mathrm{and}\:\Sigma\:\mathrm{nU}_{\mathrm{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *