Menu Close

Find-u-v-i-f-z-z-2-ii-f-z-z-1-z-




Question Number 9553 by tawakalitu last updated on 14/Dec/16
Find :   u∙v  (i)   f(z) = ∣z∣^2   (ii)  f(z) = z + (1/z)
$$\mathrm{Find}\::\:\:\:\mathrm{u}\centerdot\mathrm{v} \\ $$$$\left(\mathrm{i}\right)\:\:\:\mathrm{f}\left(\mathrm{z}\right)\:=\:\mid\mathrm{z}\mid^{\mathrm{2}} \\ $$$$\left(\mathrm{ii}\right)\:\:\mathrm{f}\left(\mathrm{z}\right)\:=\:\mathrm{z}\:+\:\frac{\mathrm{1}}{\mathrm{z}} \\ $$
Commented by geovane10math last updated on 14/Dec/16
z is complex ?
$${z}\:\mathrm{is}\:\mathrm{complex}\:? \\ $$
Commented by tawakalitu last updated on 15/Dec/16
yes sir.
$$\mathrm{yes}\:\mathrm{sir}. \\ $$
Commented by geovane10math last updated on 15/Dec/16
This “u ∙ v” is  ∫u dv = uv − ∫v du  ?
$$\mathrm{This}\:“\mathrm{u}\:\centerdot\:\mathrm{v}''\:\mathrm{is} \\ $$$$\int{u}\:{dv}\:=\:\boldsymbol{{uv}}\:−\:\int{v}\:{du}\:\:? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *