Question Number 67153 by mhmd last updated on 23/Aug/19
$${find}\:\int\left({v}^{\mathrm{3}} −\mathrm{2}\right)/\left({v}^{\mathrm{4}} +{v}\:\:\right){dv} \\ $$
Answered by mhmd last updated on 23/Aug/19
$$ \\ $$
Answered by MJS last updated on 23/Aug/19
$$\int\frac{{v}^{\mathrm{3}} −\mathrm{2}}{{v}^{\mathrm{4}} +{v}}{dv}=\int\frac{\mathrm{4}{v}^{\mathrm{3}} +\mathrm{1}}{\mathrm{4}\left({v}^{\mathrm{4}} +{v}\right)}{dv}−\int\frac{\mathrm{9}}{\mathrm{4}\left({v}^{\mathrm{4}} +{v}\right)}{dv}= \\ $$$$ \\ $$$$\:\:\:\:\:\int\frac{\mathrm{4}{v}^{\mathrm{3}} +\mathrm{1}}{\mathrm{4}\left({v}^{\mathrm{4}} +{v}\right)}{dv}=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{4}{v}^{\mathrm{3}} +\mathrm{1}}{{v}^{\mathrm{4}} +{v}}{dv}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{t}={v}^{\mathrm{4}} +{v}\:\rightarrow\:{dv}=\frac{{dt}}{\mathrm{4}{v}^{\mathrm{3}} +\mathrm{1}}\right] \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{dt}}{{t}}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:{t}\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\left({v}^{\mathrm{4}} +{v}\right)\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:{v}\:+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\left({v}^{\mathrm{3}} +\mathrm{1}\right) \\ $$$$ \\ $$$$\:\:\:\:\:−\int\frac{\mathrm{9}}{\mathrm{4}\left({v}^{\mathrm{4}} +{v}\right)}{dv}=−\frac{\mathrm{9}}{\mathrm{4}}\int\frac{{dv}}{{v}^{\mathrm{4}} +{v}}=−\frac{\mathrm{9}}{\mathrm{4}}\int\frac{{dv}}{{v}^{\mathrm{4}} \left(\mathrm{1}+\frac{\mathrm{1}}{{v}^{\mathrm{3}} }\right)}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{u}=\mathrm{1}+\frac{\mathrm{1}}{{v}^{\mathrm{3}} }\:\rightarrow\:{dv}=−\frac{{v}^{\mathrm{4}} }{\mathrm{3}}\right] \\ $$$$\:\:\:\:\:=\frac{\mathrm{3}}{\mathrm{4}}\int\frac{{du}}{{u}}=\frac{\mathrm{3}}{\mathrm{4}}\mathrm{ln}\:{u}\:=\frac{\mathrm{3}}{\mathrm{4}}\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{v}^{\mathrm{3}} }\right)\:=\frac{\mathrm{3}}{\mathrm{4}}\mathrm{ln}\:\left({v}^{\mathrm{3}} +\mathrm{1}\right)\:−\frac{\mathrm{9}}{\mathrm{4}}\mathrm{ln}\:{v} \\ $$$$ \\ $$$$=\mathrm{ln}\:\left({v}^{\mathrm{3}} +\mathrm{1}\right)\:−\mathrm{2ln}\:{v}\:+{C} \\ $$