Menu Close

find-v-3-2-v-4-v-dv-




Question Number 67153 by mhmd last updated on 23/Aug/19
find ∫(v^3 −2)/(v^4 +v  )dv
find(v32)/(v4+v)dv
Answered by mhmd last updated on 23/Aug/19
Answered by MJS last updated on 23/Aug/19
∫((v^3 −2)/(v^4 +v))dv=∫((4v^3 +1)/(4(v^4 +v)))dv−∫(9/(4(v^4 +v)))dv=         ∫((4v^3 +1)/(4(v^4 +v)))dv=(1/4)∫((4v^3 +1)/(v^4 +v))dv=            [t=v^4 +v → dv=(dt/(4v^3 +1))]       =(1/4)∫(dt/t)=(1/4)ln t =(1/4)ln (v^4 +v) =(1/4)ln v +(1/4)ln (v^3 +1)         −∫(9/(4(v^4 +v)))dv=−(9/4)∫(dv/(v^4 +v))=−(9/4)∫(dv/(v^4 (1+(1/v^3 ))))=            [u=1+(1/v^3 ) → dv=−(v^4 /3)]       =(3/4)∫(du/u)=(3/4)ln u =(3/4)ln (1+(1/v^3 )) =(3/4)ln (v^3 +1) −(9/4)ln v    =ln (v^3 +1) −2ln v +C
v32v4+vdv=4v3+14(v4+v)dv94(v4+v)dv=4v3+14(v4+v)dv=144v3+1v4+vdv=[t=v4+vdv=dt4v3+1]=14dtt=14lnt=14ln(v4+v)=14lnv+14ln(v3+1)94(v4+v)dv=94dvv4+v=94dvv4(1+1v3)=[u=1+1v3dv=v43]=34duu=34lnu=34ln(1+1v3)=34ln(v3+1)94lnv=ln(v3+1)2lnv+C

Leave a Reply

Your email address will not be published. Required fields are marked *