Question Number 76524 by john santu last updated on 28/Dec/19
$${find}\:{vector}\:{unit}\:{perpendicular}\: \\ $$$${to}\:{vector}\:\overset{−} {{a}}=\left(\mathrm{1},\mathrm{2},\mathrm{3}\right)\:{and}\:\overset{−} {{b}}=\left(−\mathrm{1},\mathrm{0},\mathrm{2}\right) \\ $$
Answered by MJS last updated on 28/Dec/19
$$\begin{vmatrix}{\mathrm{1}}&{−\mathrm{1}}&{{u}_{{x}} }\\{\mathrm{2}}&{\mathrm{0}}&{{u}_{{y}} }\\{\mathrm{3}}&{\mathrm{2}}&{{u}_{{z}} }\end{vmatrix}=\mathrm{4}{u}_{{x}} −\mathrm{5}{u}_{{y}} +\mathrm{2}{u}_{{z}} =\begin{pmatrix}{\mathrm{4}}\\{−\mathrm{5}}\\{\mathrm{2}}\end{pmatrix} \\ $$$$\mathrm{abs}\:\begin{pmatrix}{\mathrm{4}}\\{−\mathrm{5}}\\{\mathrm{2}}\end{pmatrix}\:=\mathrm{3}\sqrt{\mathrm{5}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{5}}}\begin{pmatrix}{\mathrm{4}}\\{−\mathrm{5}}\\{\mathrm{2}}\end{pmatrix}\:=\begin{pmatrix}{\frac{\mathrm{4}\sqrt{\mathrm{5}}}{\mathrm{15}}}\\{−\frac{\sqrt{\mathrm{5}}}{\mathrm{3}}}\\{\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{15}}}\end{pmatrix} \\ $$
Commented by benjo 1/2 santuyy last updated on 28/Dec/19
$${why}\:{sir}\:{not}\:{make}\:\pm? \\ $$
Commented by MJS last updated on 28/Dec/19
$$\mathrm{of}\:\mathrm{course}\:\mathrm{both}\:+\:\mathrm{and}\:−\:\mathrm{are}\:\mathrm{ok},\:\mathrm{I}\:\mathrm{thought}\:\mathrm{one} \\ $$$$\mathrm{of}\:\mathrm{these}\:\mathrm{is}\:\mathrm{enough}… \\ $$
Commented by benjo 1/2 santuyy last updated on 28/Dec/19
$${oo}\:{ok}\:{sir}\:{thanks}\:{you} \\ $$
Answered by vishalbhardwaj last updated on 28/Dec/19