Menu Close

find-vector-unit-perpendicular-to-vector-a-1-2-3-and-b-1-0-2-




Question Number 76524 by john santu last updated on 28/Dec/19
find vector unit perpendicular   to vector a^− =(1,2,3) and b^− =(−1,0,2)
findvectorunitperpendiculartovectora=(1,2,3)andb=(1,0,2)
Answered by MJS last updated on 28/Dec/19
 determinant ((1,(−1),u_x ),(2,0,u_y ),(3,2,u_z ))=4u_x −5u_y +2u_z = ((4),((−5)),(2) )  abs  ((4),((−5)),(2) ) =3(√5)  (1/(3(√5))) ((4),((−5)),(2) ) = ((((4(√5))/(15))),((−((√5)/3))),(((2(√5))/(15))) )
|11ux20uy32uz|=4ux5uy+2uz=(452)abs(452)=35135(452)=(4515532515)
Commented by benjo 1/2 santuyy last updated on 28/Dec/19
why sir not make ±?
whysirnotmake±?
Commented by MJS last updated on 28/Dec/19
of course both + and − are ok, I thought one  of these is enough...
ofcourseboth+andareok,Ithoughtoneoftheseisenough
Commented by benjo 1/2 santuyy last updated on 28/Dec/19
oo ok sir thanks you
oooksirthanksyou
Answered by vishalbhardwaj last updated on 28/Dec/19
a^→ =i^� +2j^� +3k^�   and b^→ =−i^� +2k^�   a^→ ×b^→ =(i^� +2j^� +3k^� )×(−i^� +2k^� )  = −2(i^� ×k^� )−2(j^� ×i^� )+4(j^� ×k^� )  −3(k^� ×i^� )  = 2j^� +2k^� +4i^� −3j^�   = 4i^� −j^� +2k^�   and   ∣a^→ ×b^→ ∣=(√((4)^2 +(−1)^2 +(2)^2 ))     = (√(16+1+4))= (√(21))  let p^→ =a^→ ×b^→ ,   p^�  = (p^→ /(∣p^→ ∣)) = ((4i^� −j^� +2k^� )/( (√(21))))  ⇒   p^�  = (4/( (√(21)))) i^� −(1/( (√(21)))) j^� +(2/( (√(21)))) k^�
a=i^+2j^+3k^andb=i^+2k^a×b=(i^+2j^+3k^)×(i^+2k^)=2(i^×k^)2(j^×i^)+4(j^×k^)3(k^×i^)=2j^+2k^+4i^3j^=4i^j^+2k^anda×b∣=(4)2+(1)2+(2)2=16+1+4=21letp=a×b,p^=pp=4i^j^+2k^21p^=421i^121j^+221k^
Commented by benjo 1/2 santuyy last updated on 28/Dec/19
sorry sir. but wrong a×b
sorrysir.butwronga×b
Commented by benjo 1/2 santuyy last updated on 28/Dec/19
i got a × b = 4i − 5j +2k
igota×b=4i5j+2k
Commented by JDamian last updated on 28/Dec/19
  i×2k  ≠  −2(i×k)  i×2k  =  −2j    santuyy   is   right
i×2k2(i×k)i×2k=2jsantuyyisright
Commented by benjo 1/2 santuyy last updated on 28/Dec/19
thanks you sir
thanksyousir
Answered by vishalbhardwaj last updated on 28/Dec/19
a^→ =i^� +2j^� +3k^�   and b^→ =−i^� +2k^�   a^→ ×b^→ =(i^� +2j^� +3k^� )×(−i^� +2k^� )  = −2(i^� ×k^� )−2(j^� ×i^� )+4(j^� ×k^� )  −3(k^� ×i^� )  = 2j^� +2k^� +4i^� −3j^�   = 4i^� −j^� +2k^�   and   ∣a^→ ×b^→ ∣=(√((4)^2 +(−1)^2 +(2)^2 ))     = (√(16+1+4))= (√(21))  let p^→ =a^→ ×b^→ ,   p^�  = (p^→ /(∣p^→ ∣)) = ((4i^� −j^� +2k^� )/( (√(21))))  ⇒   p^�  = (4/( (√(21)))) i^� −(1/( (√(21)))) j^� +(2/( (√(21)))) k^�
a=i^+2j^+3k^andb=i^+2k^a×b=(i^+2j^+3k^)×(i^+2k^)=2(i^×k^)2(j^×i^)+4(j^×k^)3(k^×i^)=2j^+2k^+4i^3j^=4i^j^+2k^anda×b∣=(4)2+(1)2+(2)2=16+1+4=21letp=a×b,p^=pp=4i^j^+2k^21p^=421i^121j^+221k^

Leave a Reply

Your email address will not be published. Required fields are marked *