Question Number 71802 by mathmax by abdo last updated on 20/Oct/19
$${find}\:\int\:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}+\mathrm{3}\right)^{\mathrm{2}} \left({x}^{\mathrm{3}} −\mathrm{5}{x}+\mathrm{4}\right)}{dx} \\ $$
Commented by mathmax by abdo last updated on 20/Oct/19
$${let}\:{I}\:=\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}+\mathrm{3}\right)^{\mathrm{2}} \left({x}^{\mathrm{3}} −\mathrm{5}{x}+\mathrm{4}\right)}\:{first}\:{we}\:{have} \\ $$$${x}^{\mathrm{3}} −\mathrm{5}{x}+\mathrm{4}={x}^{\mathrm{3}} −\mathrm{1}−\mathrm{5}{x}\:+\mathrm{5}\:=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)−\mathrm{5}\left({x}−\mathrm{1}\right) \\ $$$$=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}−\mathrm{5}\right)=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}−\mathrm{4}\right)\:\Rightarrow \\ $$$${I}=\int\:\frac{\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{3}\right)^{\mathrm{2}} \left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}−\mathrm{4}\right)}{dx}=\int\:\:\frac{{dx}}{\left({x}+\mathrm{3}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{x}−\mathrm{4}\right)} \\ $$$${roots}\:{of}\:{x}^{\mathrm{2}} +{x}−\mathrm{4}\:\rightarrow\Delta=\mathrm{1}−\mathrm{4}\left(−\mathrm{4}\right)=\mathrm{17}\:\Rightarrow{x}_{\mathrm{1}} =\frac{−\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$${and}\:{x}_{\mathrm{2}} =\frac{−\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{2}}\:{let}\:{decompose}\:{F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}+\mathrm{3}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{x}−\mathrm{4}\right)} \\ $$$$=\frac{\mathrm{1}}{\left({x}+\mathrm{3}\right)^{\mathrm{2}} \left({x}−{x}_{\mathrm{1}} \right)\left({x}−{x}_{\mathrm{2}} \right)}\:\Rightarrow{F}\left({x}\right)=\frac{{a}}{{x}+\mathrm{3}}\:+\frac{{b}}{\left({x}+\mathrm{3}\right)^{\mathrm{2}} }\:+\frac{{c}}{{x}−{x}_{\mathrm{1}} }\:+\frac{{d}}{{x}−{x}_{\mathrm{2}} } \\ $$$${b}=\frac{\mathrm{1}}{\left(−\mathrm{3}−{x}_{\mathrm{1}} \right)\left(−\mathrm{3}−{x}_{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\left({x}_{\mathrm{1}} +\mathrm{3}\right)\left({x}_{\mathrm{2}} +\mathrm{3}\right)} \\ $$$$=\frac{\mathrm{1}}{\left(\frac{−\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}+\mathrm{3}\right)\left(\frac{−\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{2}}+\mathrm{3}\right)}\:=\frac{\mathrm{4}}{\left(\mathrm{5}+\sqrt{\mathrm{17}}\right)\left(\mathrm{5}−\sqrt{\mathrm{17}}\right)}\:=\frac{\mathrm{4}}{\mathrm{25}−\mathrm{17}} \\ $$$$=\frac{\mathrm{4}}{\mathrm{8}}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${c}=\frac{\mathrm{1}}{\left({x}_{\mathrm{1}} +\mathrm{3}\right)^{\mathrm{2}} \left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\left(\frac{−\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}+\mathrm{3}\right)^{\mathrm{2}} \left(\sqrt{\mathrm{17}}\right)}\:=\frac{\mathrm{4}}{\:\sqrt{\mathrm{17}}\left(\mathrm{5}+\sqrt{\mathrm{17}}\right)^{\mathrm{2}} } \\ $$$${d}=\frac{\mathrm{1}}{\left({x}_{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} \left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)}\:=\frac{\mathrm{1}}{\left(\frac{−\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{2}}+\mathrm{3}\right)^{\mathrm{2}} \left(−\sqrt{\mathrm{17}}\right)}\:=\frac{−\mathrm{4}}{\:\sqrt{\mathrm{17}}\left(\mathrm{5}−\sqrt{\mathrm{17}}\right)^{\mathrm{2}} } \\ $$$${F}\left(\mathrm{0}\right)=−\frac{\mathrm{1}}{\mathrm{36}}\:=\frac{{a}}{\mathrm{3}}\:+\frac{{b}}{\mathrm{9}}−\frac{{c}}{{x}_{\mathrm{1}} }−\frac{{d}}{{x}_{\mathrm{2}} }\:\Rightarrow−\frac{\mathrm{1}}{\mathrm{12}}\:={a}+\frac{{b}}{\mathrm{3}}−\frac{\mathrm{3}{c}}{{x}_{\mathrm{1}} }−\frac{\mathrm{3}{d}}{{x}_{\mathrm{2}} }\:\Rightarrow \\ $$$${a}=−\frac{\mathrm{1}}{\mathrm{12}}−\frac{{b}}{\mathrm{3}}+\frac{\mathrm{3}{c}}{{x}_{\mathrm{1}} }\:+\frac{\mathrm{3}{d}}{{x}_{\mathrm{2}} }\:\Rightarrow{I}=\int\:{F}\left({x}\right){dx} \\ $$$${I}\:={aln}\mid{x}+\mathrm{3}\mid−\frac{{b}}{{x}+\mathrm{3}}\:+{cln}\mid{x}−{x}_{\mathrm{1}} \mid+{dln}\mid{x}−{x}_{\mathrm{2}} \mid\:+{C} \\ $$
Answered by MJS last updated on 20/Oct/19
$$\int\frac{\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)}{\left({x}−\mathrm{1}\right)\left({x}+\mathrm{3}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{x}−\mathrm{4}\right)}{dx}= \\ $$$$=\int\frac{{x}+\mathrm{1}}{\left({x}+\mathrm{3}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{x}−\mathrm{4}\right)}{dx}= \\ $$$$=−\int\frac{{dx}}{\left({x}+\mathrm{3}\right)^{\mathrm{2}} }−\mathrm{2}\int\frac{{dx}}{{x}+\mathrm{3}}+\left(\mathrm{1}+\frac{\mathrm{4}}{\:\sqrt{\mathrm{17}}}\right)\int\frac{{dx}}{{x}+\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}}+\left(\mathrm{1}−\frac{\mathrm{4}}{\:\sqrt{\mathrm{17}}}\right)\int\frac{{dx}}{{x}+\frac{\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{2}}}= \\ $$$$=\frac{\mathrm{1}}{{x}+\mathrm{3}}−\mathrm{2ln}\:\mid{x}+\mathrm{3}\mid\:+\left(\mathrm{1}+\frac{\mathrm{4}}{\:\sqrt{\mathrm{17}}}\right)\mathrm{ln}\:\mid{x}+\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}\mid\:+\left(\mathrm{1}−\frac{\mathrm{4}}{\:\sqrt{\mathrm{17}}}\right)\mathrm{ln}\:\mid{x}+\frac{\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{2}}\mid\:+{C} \\ $$
Commented by mathmax by abdo last updated on 20/Oct/19
$${thnks}\:{sir}. \\ $$