Menu Close

Find-X-if-0-e-x-0-and-xr-r-e-e-n-or-n-e-0-and-x-y-y-x-1-




Question Number 4807 by Dnilka228 last updated on 14/Mar/16
Find X if...  ∫_0 ^e x≠0 and ((xr)/r^e )=(√(e+n))  or  Σ_(n!) e=0 and ((℧x≠y)/(℧y≠x))=−1
FindXife0x0andxrre=e+norn!e=0andxyyx=1
Commented by Dnilka228 last updated on 14/Mar/16
I′m know, im crazy))0)
Imknow,imcrazy))0)
Commented by prakash jain last updated on 15/Mar/16
What is question?
Whatisquestion?
Answered by FilupSmith last updated on 16/Mar/16
((xr)/r^e )=(√(e+n))  xr^(1−e) =(e+n)^(1/2)   x=r^(e−1) (e+n)^(1/2)     let A=∫_0 ^( e) xdr          (1)    dr or dn is unspecified  ∴A=∫_0 ^( e) r^(e−1) (e+n)^(1/2) dr  =(e+n)^(1/2) ∫_0 ^( e) r^(1−e) dr  =(e+n)^(1/2) (1/(2−e))[r^(2−e) ]_0 ^e   A=(e+n)^(1/2) (1/(2−e))e^(2−e)   A=((e^2 (√(e+n)))/((2−e)e^e ))    let A=∫_0 ^( e) xdn          (2)  ∴A=∫_0 ^( e) r^(e−1) (e+n)^(1/2) dn  A=r^(e−1) ∫_0 ^( e) (√(e+n))dn  let u=e+n  du=1dn    ∴A=r^(e−1) ∫_0 ^( e) (√u)du  ∴A=r^(e−1) [(2/3)u^(3/2) ]_0 ^e   A=r^(e−1) [(2/3)(e+n)^(3/2) ]_0 ^e   A=r^(e−1) (2/3)[(2e)^(3/2) −(e)^(3/2) ]  A=r^(e−1) (2/3)(2^(3/2) e^(3/2) −e^(3/2) )  A=(2/3)r^(e−1) (√e^3 )((√8)−1)
xrre=e+nxr1e=(e+n)12x=re1(e+n)12letA=0exdr(1)drordnisunspecifiedA=0ere1(e+n)1/2dr=(e+n)120er1edr=(e+n)1212e[r2e]0eA=(e+n)1212ee2eA=e2e+n(2e)eeletA=0exdn(2)A=0ere1(e+n)1/2dnA=re10ee+ndnletu=e+ndu=1dnA=re10euduA=re1[23u32]0eA=re1[23(e+n)32]0eA=re123[(2e)32(e)32]A=re123(232e32e32)A=23re1e3(81)

Leave a Reply

Your email address will not be published. Required fields are marked *