Menu Close

Find-x-n-n-Z-satisfying-x-0-0-x-1-1-and-x-n-1-x-n-x-n-1-2-1-x-n-1-x-n-2-1-for-n-1-




Question Number 7532 by Yozzia last updated on 02/Sep/16
Find x_n  (n∈Z) satisfying x_0 =0, x_1 =1 and  x_(n+1) =x_n (√(x_(n−1) ^2 +1))+x_(n−1) (√(x_n ^2 +1)) for n≥1.
Findxn(nZ)satisfyingx0=0,x1=1andxn+1=xnxn12+1+xn1xn2+1forn1.
Commented by sou1618 last updated on 03/Sep/16
when n=1    x_2 =1  when n=2    x_3 =2(√2)  when n=3    x_4 =2(√2)(√2)+(√(8+1))=7  ...  when n>2     x_n ,x_(n−1) >1  x_(n+1) =x_n (√(x_(n−1) ^2 +1))+x_(n−1) (√(x_n ^2 +1))∙∙∙(∗)  x_n =(1/2)(y_n −(1/y_n ))(y_n ≥1)  (1/2)(y_(n+1) −y_(n+1) ^(−1) )=(1/2)(y_n −y_n ^(−1) )(1/2)(y_(n−1) +y_(n−1) ^(−1) )+(1/2)(y_(n−1) −y_(n−1) ^(−1) )(1/2)(y_n +y_n ^(−1) )  2(y_(n+1) −y_(n+1) ^(−1) )=(y_n −y_n ^(−1) )(y_(n−1) +y_(n−1) ^(−1) )+(y_(n−1) −y_(n−1) ^(−1) )(y_n +y_n ^(−1) )  2(y_(n+1) −y_(n+1) ^(−1) )=2y_n y_(n−1) −2y_n ^(−1) y_n ^(−1)   y_(n+1) −(1/y_(n+1) )=y_n y_(n−1) −(1/(y_n y_(n−1) ))  y_(n+1) ^2 −(y_n y_(n−1) −(1/(y_n y_(n−1) )))y_(n+1) −1=0  (y_(n+1) −y_n y_(n−1) )(y_(n+1) +(1/(y_n y_(n−1) )))=0  y_(n+1) =y_n y_(n−1) (∵y_n >0)    x_0 =0,y_0 ^2 −0y_0 −1=0     y_0 =1  x_1 =1,y_1 ^2 −2y_1 −1=0    y_1 =1+(√2)  y_n =y_(n−1) y_(n−2) =y_(n−2) ^2 y_(n−3) =y_(n−3) ^3 y_(n−4) ^2 =y_(n−4) ^5 y_(n−5) ^3 =...  y_2 =1(1+(√2)),y_3 =(1+(√2))^2 ,y_4 =(1+(√2))^3 ,y_5 =(1+(√2))^5 ...  1 1 2 3 5 8 13 21...fibonacci  y_n =(1+(√2))^(f(n))     { ((f(n)=f(n−1)+f(n−2))),((f(0)=0,f(1)=1)) :}  f(n)=(1/( (√5))){(((1+(√5))/2))^n −(((1−(√5))/2))^n }       =((φ^n −(−φ)^(−n) )/( (√5))),(φ=((1+(√5))/2))      x_n =(1/2){(1+(√2))^(f(n)) −(1+(√2))^(−f(n)) }  ++++++++++++  x_0 =(1/2){(1+(√2))^0 −(1+(√2))^0 }=0  x_1 =(1/2){1+(√2)−(1/(1+(√2)))}=(((1+(√2))^2 −1^2 )/(2(1+(√2))))=1  x_2 =x_1 =1  x_3 =(1/2){(1+(√2))^2 −(1/((1+(√2))^2 ))}=((((1+(√2))^2 )^2 −1^2 )/(2(1+(√2))^2 ))      =(((3+2(√2)+1)(3+2(√2)−1))/(2(1+(√2))^2 ))      =(((2(√2)(1+(√2)))(2(1+(√2))))/(2(1+(√2))^2 ))=2(√2)  ...
whenn=1x2=1whenn=2x3=22whenn=3x4=222+8+1=7whenn>2xn,xn1>1xn+1=xnxn12+1+xn1xn2+1()xn=12(yn1yn)(yn1)12(yn+1yn+11)=12(ynyn1)12(yn1+yn11)+12(yn1yn11)12(yn+yn1)2(yn+1yn+11)=(ynyn1)(yn1+yn11)+(yn1yn11)(yn+yn1)2(yn+1yn+11)=2ynyn12yn1yn1yn+11yn+1=ynyn11ynyn1yn+12(ynyn11ynyn1)yn+11=0(yn+1ynyn1)(yn+1+1ynyn1)=0yn+1=ynyn1(yn>0)x0=0,y020y01=0y0=1x1=1,y122y11=0y1=1+2yn=yn1yn2=yn22yn3=yn33yn42=yn45yn53=y2=1(1+2),y3=(1+2)2,y4=(1+2)3,y5=(1+2)51123581321fibonacciyn=(1+2)f(n){f(n)=f(n1)+f(n2)f(0)=0,f(1)=1f(n)=15{(1+52)n(152)n}=ϕn(ϕ)n5,(ϕ=1+52)xn=12{(1+2)f(n)(1+2)f(n)}++++++++++++x0=12{(1+2)0(1+2)0}=0x1=12{1+211+2}=(1+2)2122(1+2)=1x2=x1=1x3=12{(1+2)21(1+2)2}=((1+2)2)2122(1+2)2=(3+22+1)(3+221)2(1+2)2=(22(1+2))(2(1+2))2(1+2)2=22
Commented by sou1618 last updated on 03/Sep/16
if you need fibonacci=f(n)  a_0 =0,a_1 =1  a_n =a_(n−1) +a_(n−2) (n≥2)  a_n −pa_(n−1) =q(a_(n−1) −pa_(n−2) )  a_n =(p+q)a_(n−1) −pqa_(n−2)    { ((p+q=1)),((pq=−1)) :}  p^2 −p+p=0  p=((1±(√5))/2)  (p,q)=(((1+(√5))/2),((1−(√5))/2))   { ((a_n −pa_(n−1) =q(a_(n−1) −pa_(n−2) ))),((a_n −qa_(n−1) =p(a_(n−1) −qa_(n−2) ))) :}  when n=2   { ((a_1 −pa_0 =1)),((a_1 −qa_0 =1)) :}  so   { ((a_n −pa_(n−1) =q^(n−1) ∙∙∙(1))),((a_n −qa_(n−1) =p^(n−1) ∙∙∙(2))) :}  (2)−(1)⇒  (p−q)a_(n−1) =p^(n−1) −q^(n−1)   a_n =(1/(p−q))(p^n −q^n )  a_n =(1/( (√5))){(((1+(√5))/2))^n −(((1−(√5))/2))^n }    f(n)=a_n
ifyouneedfibonacci=f(n)a0=0,a1=1an=an1+an2(n2)anpan1=q(an1pan2)an=(p+q)an1pqan2{p+q=1pq=1p2p+p=0p=1±52(p,q)=(1+52,152){anpan1=q(an1pan2)anqan1=p(an1qan2)whenn=2{a1pa0=1a1qa0=1so{anpan1=qn1(1)anqan1=pn1(2)(2)(1)(pq)an1=pn1qn1an=1pq(pnqn)an=15{(1+52)n(152)n}f(n)=an
Commented by Yozzia last updated on 03/Sep/16
Nicely! What if you let x_n =sinh{u(n)} initially?
Nicely!Whatifyouletxn=sinh{u(n)}initially?
Commented by sou1618 last updated on 03/Sep/16
it′s nice idea!!  x_n =sinh(u_n )  sinh(u_(n+1) )=sinh(u_n )cosh(u_(n−1) )+sinh(u_(n−1) )cosh(u_n )  sinh(u_(n+1) )=sinh(u_n +u_(n−1) )  u_(n+1) =u_n +u_(n−1)   u_0 =0  u_1 =ln(1+(√2))  so  u_n =ln(1+(√2))×f(n)    x_n =sinh{ln(1+(√2))f(n)}     =(1/2){(1+(√2))^(f(n)) −(1+(√2))^(−f(n)) }
itsniceidea!!xn=sinh(un)sinh(un+1)=sinh(un)cosh(un1)+sinh(un1)cosh(un)sinh(un+1)=sinh(un+un1)un+1=un+un1u0=0u1=ln(1+2)soun=ln(1+2)×f(n)xn=sinh{ln(1+2)f(n)}=12{(1+2)f(n)(1+2)f(n)}

Leave a Reply

Your email address will not be published. Required fields are marked *