Menu Close

Find-x-x-log-4-x-x-log-4-x-2-




Question Number 74244 by Maclaurin Stickker last updated on 20/Nov/19
Find x  x^(log_(4 ) (√x)) =x^(log_4 x) −2
Findxxlog4x=xlog4x2
Answered by MJS last updated on 20/Nov/19
t=x^(log_4  (√x)) =x^((ln (√x))/(ln 4)) =x^((ln x)/(4ln 2))   ln t =((ln x)/(4ln 2))ln x =(((ln x)^2 )/(4ln 2))  ⇒ x=e^(2(√(ln 2 ln t)))   x^(log_4  (√x)) =t  x^(log_4  x) =t^2   t=t^2 −2  t^2 −t−2=0  ⇒ t=−1∨t=2 but for x∈R we need t>1  ⇒ t=2 ⇒ x=4
t=xlog4x=xlnxln4=xlnx4ln2lnt=lnx4ln2lnx=(lnx)24ln2x=e2ln2lntxlog4x=txlog4x=t2t=t22t2t2=0t=1t=2butforxRweneedt>1t=2x=4
Answered by mr W last updated on 20/Nov/19
x>0  let u=x^(log_4  (√x)) =x^((1/2)log_4  x) =(√x^(log_4  x) )>0  ⇒u=u^2 −2  ⇒u^2 −u−2=0  ⇒(u−2)(u+1)=0  ⇒u=2, −1  with u=2:  (√x^(log_4  x) )=2  x^(log_4  x) =4  x^((ln x)/(ln 4)) =4  ((ln x)/(ln 4))=((ln 4)/(ln x))  (ln x)^2 =(ln 4)^2   ln x=±ln 4=ln 4^(±1)   ⇒x=4^(±1) =4 or (1/4)
x>0letu=xlog4x=x12log4x=xlog4x>0u=u22u2u2=0(u2)(u+1)=0u=2,1withu=2:xlog4x=2xlog4x=4xlnxln4=4lnxln4=ln4lnx(lnx)2=(ln4)2lnx=±ln4=ln4±1x=4±1=4or14
Commented by MJS last updated on 20/Nov/19
same path we share...  but the given equation also has the solution  x=(1/4)  how to get it?
samepathwesharebutthegivenequationalsohasthesolutionx=14howtogetit?
Commented by mr W last updated on 20/Nov/19
two solutions indeed. see above.
twosolutionsindeed.seeabove.
Commented by Maclaurin Stickker last updated on 21/Nov/19
Sir, I added 2 by the sides and applied  log_2  in both sides. Is this correct?  I got the same results
Sir,Iadded2bythesidesandappliedlog2inbothsides.Isthiscorrect?Igotthesameresults
Commented by MJS last updated on 21/Nov/19
doesn′t sound correct to me, please post it
doesntsoundcorrecttome,pleasepostit
Commented by Maclaurin Stickker last updated on 21/Nov/19
x^(log_4 (√x)) +2=x^(log_4 x)   log_2 (x^(log_4 (√x)) )+log_2 2=log_2 (x^(log_4 x) )  ....  (1/4)log_2 x^2 =(1/2)log_2 x^2 −1  ....  log_2 x^2 =4  log_2 x=2  and  log_2 x=−2  x=4  or x=(1/4)
xlog4x+2=xlog4xlog2(xlog4x)+log22=log2(xlog4x).14log2x2=12log2x21.log2x2=4log2x=2andlog2x=2x=4orx=14
Commented by MJS last updated on 21/Nov/19
funny you get the solution...  but  log_b  (p+q) ≠log_b  p +log_b  q  b^(log_b  (p+q)) =p+a but b^(log_b  p +log_b  q) =pq  so your 2^(nd)  line is not equivalent to the first  line
funnyyougetthesolutionbutlogb(p+q)logbp+logbqblogb(p+q)=p+abutblogbp+logbq=pqsoyour2ndlineisnotequivalenttothefirstline

Leave a Reply

Your email address will not be published. Required fields are marked *