Menu Close

findf-a-arctan-cosx-x-2-a-2-dx-witha-gt-0-




Question Number 74350 by mathmax by abdo last updated on 22/Nov/19
findf(a)= ∫_(−∞) ^(+∞)  ((arctan(cosx))/(x^2 +a^2 ))dx witha>0
findf(a)=+arctan(cosx)x2+a2dxwitha>0
Commented by abdomathmax last updated on 23/Nov/19
changement x=at give f(a)=∫_(−∞) ^(+∞)  ((arctan(cos(at)))/(a^2 (t^2 +1)))adt  ⇒af(a)=∫_(−∞) ^(+∞)  ((arctan(cos(at)))/(t^2 +1))dt let   W(z)=((arctan(cos(az)))/(z^2 +1)) ⇒W(z)=((arcran(cos(az)))/((z−i)(z+i)))  ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)=  2iπ ×((arctan(cos(ai)))/(2i)) =π arcran(cos(ia))  cos(ia) =ch(−a)=ch(a) =((e^a +e^(−a) )/2) ⇒  ∫_(−∞) ^(+∞) W(z)dz =π arctan(((e^a +e^(−a) )/2))=af(a) ⇒  f(a)=(π/a) arctan(((e^a +e^(−a) )/2))
changementx=atgivef(a)=+arctan(cos(at))a2(t2+1)adtaf(a)=+arctan(cos(at))t2+1dtletW(z)=arctan(cos(az))z2+1W(z)=arcran(cos(az))(zi)(z+i)+W(z)dz=2iπRes(W,i)=2iπ×arctan(cos(ai))2i=πarcran(cos(ia))cos(ia)=ch(a)=ch(a)=ea+ea2+W(z)dz=πarctan(ea+ea2)=af(a)f(a)=πaarctan(ea+ea2)

Leave a Reply

Your email address will not be published. Required fields are marked *