Menu Close

fjnd-inverse-of-matrix-2-5-1-3-




Question Number 141400 by Raffaqet last updated on 18/May/21
fjnd inverse of matrix [(2,(−5)),(1,3) ]
fjndinverseofmatrix[2513]
Answered by iloveisrael last updated on 18/May/21
 A^(−1)  = (1/(6−(−5)))  [((    3     5)),((−1     2)) ]  A^(−1)  =  [((3/11         5/11)),((−1/11     2/11)) ]
A1=16(5)[3512]A1=[3/115/111/112/11]
Answered by EDWIN88 last updated on 18/May/21
 Cayley −Hamilton theorem   ∣λI−A∣ = 0 ⇒p(λ)=λ^2 −tr .A+ det(A) =0  p(A) = A^2 −5A +11I = 0  ⇒A−5I = −11A^(−1)   ⇒A^(−1)  = (1/(11)) {  (((5    0)),((0    5)) ) −  (((2      −5)),((1          3)) ) }  ⇒A^(−1)  = (1/(11))  (((    3     5)),((−1     2)) ) ⋇
CayleyHamiltontheoremλIA=0p(λ)=λ2tr.A+det(A)=0p(A)=A25A+11I=0A5I=11A1A1=111{(5005)(2513)}A1=111(3512)
Answered by mathmax by abdo last updated on 19/May/21
p_c (A) =det (A−xI)= determinant (((2−x     −5)),((1            3−x)))=(2−x)(3−x)+5  =(x−2)(x−3)+5 =x^2 −5x+6 +5 =x^2 −5x +11  cayley hamilton ⇒A^2 −5A +11I =0 ⇒A^2 −5A =−11 I ⇒  −(1/(11))(A^2 −5A) =I ⇒−(1/(11))A×(A−5I)=I ⇒  A^(−1)  =−(1/(11))(A−5I)=(1/(11))(5I−A)=(5/(11)) (((1       0)),((0        1)) )−(1/(11)) (((2        −5)),((1             3)) )  = ((((3/(11))             (5/(11)))),((−(1/(11))          (2/(11)))) )
pc(A)=det(AxI)=|2x513x|=(2x)(3x)+5=(x2)(x3)+5=x25x+6+5=x25x+11cayleyhamiltonA25A+11I=0A25A=11I111(A25A)=I111A×(A5I)=IA1=111(A5I)=111(5IA)=511(1001)111(2513)=(311511111211)

Leave a Reply

Your email address will not be published. Required fields are marked *