Menu Close

fnd-dx-x-2-3-x-2-




Question Number 65920 by mathmax by abdo last updated on 05/Aug/19
fnd ∫ (dx/(x+2−(√(3+x^2 ))))
fnddxx+23+x2
Commented by mathmax by abdo last updated on 12/Aug/19
let I =∫  (dx/(x+2−(√(3+x^2 ))))  cha7gement  x=(√3)sh(t)give  I =∫    (((√3)ch(t))/( (√3)sh(t)+2−(√3)ch(t)))dt =∫  (((√3)((e^t  +e^(−t) )/2))/( (√3)((e^t −e^(−t) )/2)+2−(√3)((e^t  +e^(−t) )/2)))dt  =∫   (((√3)(e^t  +e^(−t) ))/( (√3)(e^t −e^(−t) )+4−(√3)(e^t  +e^(−t) )))dt  =_(e^t =u)     ∫  (((√3)(u+u^(−1) ))/( (√3)(u−u^(−1) )+4−(√3)(u+u^(−1) )))(du/u)  =∫ (((√3)(u+u^(−1) ))/( (√3)u^2 −(√3) +4u −(√3)u^2 −(√3))) du =∫  (((√3)(u+u^(−1) ))/(4u−2(√3)))du  =∫  (((√3)u^2  +(√3))/(4u^2 −2(√3)u))du =((√3)/4) ∫  ((u^2  +1)/(u^2 −((√3)/2)))du  =((√3)/4)∫  ((u^2 −((√3)/2)+1−((√3)/2))/(u^2 −((√3)/2)))du =((√3)/4)u +((√3)/8)(2−(√3)) ∫   (du/(u^2 −((√3)/2)))  =((√3)/4)u +((√3)/8)(2−(√3)) ∫   ((1/(u−(√((√3)/2)))) −(1/(u+(√((√3)/2)))))du  =((√3)/4)u +((√3)/8)(2−(√3))ln∣((u−(√((√3)/2)))/(u+(√((√3)/2))))∣ +c we have  u=e^t   and t=argsh((x/( (√3))))=ln((x/( (√3))) +(√(1+(x^2 /3)))) ⇒u=((x+(√(3+x^2 )))/( (√3)))  ⇒I =(((√3)(x+(√(3+x^2 ))))/(4(√3))) +((√3)/8)(2−(√3))ln∣((((x+(√(3+x^2 )))/( (√3)))−(√((√3)/2)))/(((x+(√(3+x^2 )))/( (√3))) +(√((√3)/2))))∣ +C
letI=dxx+23+x2cha7gementx=3sh(t)giveI=3ch(t)3sh(t)+23ch(t)dt=3et+et23etet2+23et+et2dt=3(et+et)3(etet)+43(et+et)dt=et=u3(u+u1)3(uu1)+43(u+u1)duu=3(u+u1)3u23+4u3u23du=3(u+u1)4u23du=3u2+34u223udu=34u2+1u232du=34u232+132u232du=34u+38(23)duu232=34u+38(23)(1u321u+32)du=34u+38(23)lnu32u+32+cwehaveu=etandt=argsh(x3)=ln(x3+1+x23)u=x+3+x23I=3(x+3+x2)43+38(23)lnx+3+x2332x+3+x23+32+C
Answered by MJS last updated on 07/Aug/19
∫(dx/(x+2−(√(x^2 +3))))=2∫(dx/(4x+1))+∫(x/(4x+1))dx+3∫((√(x^2 +3))/(4x+1))dx  2∫(dx/(4x+1))=(1/2)ln (4x+1)  ∫(x/(4x+1))dx=(1/4)∫dx−(1/4)∫(dx/(4x+1))=(x/4)−(1/(16))ln (4x+1)  3∫((√(x^2 +3))/(4x+1))dx=       [t=arctan (((√3)/3)x) → dx=((√3)/3)(x^2 +3)dt]  =9∫(dt/((4(√3)sin t +cos t)cos^2  t))=       [u=tan (t/2) → dt=2cos^2  (t/2) du]  =−18∫(((u^2 +1)^2 )/((u−1)^2 (u+1)^2 (u−7−4(√3))(u+7−4(√3))))du=  =((3(1−4(√3)))/(16))∫(du/(u−1))+((3(√3))/4)∫(u/((u−1)^2 ))du−((3(1+4(√3)))/(16))∫(du/(u+1))+((3(√3))/4)∫(u/((u+1)^2 ))du−((21)/(16))∫(du/(u−7−4(√3)))+((21)/(16))∫(du/(u+7−4(√3)))=  now it′s easy...  =((21)/(16))ln ((u+7−4(√3))/(u−7−4(√3))) +(3/(16))ln ((u−1)/(u+1)) −((3(√3))/(2u^2 −2))=       [u=tan (t/2) =(((√(x^2 +3))−(√3))/x)]  =((21)/(16))ln ∣((x−12+7(√(x^2 +3)))/(4x+1))∣ +(3/(16))ln ∣x−(√(x^2 +3))∣ +(3/4)(√(x^2 +3))    ⇒  ∫(dx/(x+2−(√(x^2 +3))))=(7/(16))ln ∣4x+1∣ +((21)/(16))ln ∣((x−12+7(√(x^2 +3)))/(4x+1))∣ +(3/(16))ln ∣x−(√(x^2 +3))∣ +(1/4)(x+3(√(x^2 +3))) +C  ...I hope I made no typos...
dxx+2x2+3=2dx4x+1+x4x+1dx+3x2+34x+1dx2dx4x+1=12ln(4x+1)x4x+1dx=14dx14dx4x+1=x4116ln(4x+1)3x2+34x+1dx=[t=arctan(33x)dx=33(x2+3)dt]=9dt(43sint+cost)cos2t=[u=tant2dt=2cos2t2du]=18(u2+1)2(u1)2(u+1)2(u743)(u+743)du==3(143)16duu1+334u(u1)2du3(1+43)16duu+1+334u(u+1)2du2116duu743+2116duu+743=nowitseasy=2116lnu+743u743+316lnu1u+1332u22=[u=tant2=x2+33x]=2116lnx12+7x2+34x+1+316lnxx2+3+34x2+3dxx+2x2+3=716ln4x+1+2116lnx12+7x2+34x+1+316lnxx2+3+14(x+3x2+3)+CIhopeImadenotypos
Commented by mathmax by abdo last updated on 07/Aug/19
thank you sir mjs for this hard word  but you can use the  changement x =(√3)sh(t)...its eazy in this case...
thankyousirmjsforthishardwordbutyoucanusethechangementx=3sh(t)itseazyinthiscase
Commented by MJS last updated on 07/Aug/19
true...  but it was great fun to solve it like this...
truebutitwasgreatfuntosolveitlikethis
Commented by MJS last updated on 07/Aug/19
I then get  (7/8)ln ∣2x−3+2(√(x^2 +3))∣ −(1/2)arcsinh (((√3)/3)x) +(1/4)(x+(√(x^2 +3)))+C
Ithenget78ln2x3+2x2+312arcsinh(33x)+14(x+x2+3)+C