Question Number 65920 by mathmax by abdo last updated on 05/Aug/19

Commented by mathmax by abdo last updated on 12/Aug/19

Answered by MJS last updated on 07/Aug/19
![∫(dx/(x+2−(√(x^2 +3))))=2∫(dx/(4x+1))+∫(x/(4x+1))dx+3∫((√(x^2 +3))/(4x+1))dx 2∫(dx/(4x+1))=(1/2)ln (4x+1) ∫(x/(4x+1))dx=(1/4)∫dx−(1/4)∫(dx/(4x+1))=(x/4)−(1/(16))ln (4x+1) 3∫((√(x^2 +3))/(4x+1))dx= [t=arctan (((√3)/3)x) → dx=((√3)/3)(x^2 +3)dt] =9∫(dt/((4(√3)sin t +cos t)cos^2 t))= [u=tan (t/2) → dt=2cos^2 (t/2) du] =−18∫(((u^2 +1)^2 )/((u−1)^2 (u+1)^2 (u−7−4(√3))(u+7−4(√3))))du= =((3(1−4(√3)))/(16))∫(du/(u−1))+((3(√3))/4)∫(u/((u−1)^2 ))du−((3(1+4(√3)))/(16))∫(du/(u+1))+((3(√3))/4)∫(u/((u+1)^2 ))du−((21)/(16))∫(du/(u−7−4(√3)))+((21)/(16))∫(du/(u+7−4(√3)))= now it′s easy... =((21)/(16))ln ((u+7−4(√3))/(u−7−4(√3))) +(3/(16))ln ((u−1)/(u+1)) −((3(√3))/(2u^2 −2))= [u=tan (t/2) =(((√(x^2 +3))−(√3))/x)] =((21)/(16))ln ∣((x−12+7(√(x^2 +3)))/(4x+1))∣ +(3/(16))ln ∣x−(√(x^2 +3))∣ +(3/4)(√(x^2 +3)) ⇒ ∫(dx/(x+2−(√(x^2 +3))))=(7/(16))ln ∣4x+1∣ +((21)/(16))ln ∣((x−12+7(√(x^2 +3)))/(4x+1))∣ +(3/(16))ln ∣x−(√(x^2 +3))∣ +(1/4)(x+3(√(x^2 +3))) +C ...I hope I made no typos...](https://www.tinkutara.com/question/Q65973.png)
Commented by mathmax by abdo last updated on 07/Aug/19

Commented by MJS last updated on 07/Aug/19

Commented by MJS last updated on 07/Aug/19
