Menu Close

Fnd-the-value-of-the-expression-2-n-3-2-n-1-10-2-n-1-6-




Question Number 93 by mreddy last updated on 25/Jan/15
Fnd the value of the expression          ((2^(n+3) −2^(n+1) ×10)/(2^(n+1) ×6))
$$\mathrm{Fnd}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{2}^{\mathrm{n}+\mathrm{3}} −\mathrm{2}^{\mathrm{n}+\mathrm{1}} ×\mathrm{10}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} ×\mathrm{6}} \\ $$
Answered by sushmitak last updated on 28/Nov/14
((2^(n+1) (2^2 −10))/(2^(n+1) ×6))=((2^2 −10)/6)= ((−6)/6)=−1
$$\frac{\mathrm{2}^{{n}+\mathrm{1}} \left(\mathrm{2}^{\mathrm{2}} −\mathrm{10}\right)}{\mathrm{2}^{{n}+\mathrm{1}} ×\mathrm{6}}=\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{10}}{\mathrm{6}}=\:\frac{−\mathrm{6}}{\mathrm{6}}=−\mathrm{1} \\ $$