for-a-gt-0-and-b-gt-a-2-verify-the-follwing-claim-n-1-n-a-a-1-a-2-a-n-1-b-b-1-b-2-b-n-1-a-b-1-b-a-1-b-a-2- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 78456 by arkanmath7@gmail.com last updated on 17/Jan/20 fora>0andb>a+2,verifythefollwingclaim:∑n=1∞na(a+1)(a+2)…(a+n−1)b(b+1)(b+2)…(b+n−1)=a(b−1)(b−a−1)(b−a−2) Answered by mind is power last updated on 17/Jan/20 =∑n⩾1(n+1−1)anbn=∑n⩾1(n+1)!.anbn.n!−∑n⩾1n!.ann!.bn=San=a(a+1)…(a+n−1)2F1(a,b,c,z)=1+∑n⩾1an.bncn.znn!=limz→1{2F1(a,2,b,z)−2F1(a,1,b,z)}wehaveβ(b,c−b).2F1(a,b,c,z)=∫01xb−1(1−x)c−b−1(1−zx)−adxβ(b,c−b)2F1(a,b,c,1)=∫01xb−1(1−x)c−b−a−1dx⇒β(b,c−b)2F1(a,b,c,1)=β(b,c−b−a)⇒2F1=β(b,c−b−a)β(b,c−b)=Γ(b)Γ(c−b−a)Γ(c)Γ(c−a)Γ(b)Γ(c−b)⇔2F1(a,b,c,1)=Γ(c).Γ(c−a−b)Γ(c−a)Γ(c−b)2F1(a,2,b,1)=Γ(b)Γ(b−a−2)Γ(b−a)Γ(b−2)=(b−1)(b−2)Γ(b−2)Γ(b−a−2)(b−a−1)(b−a−2)Γ(b−a−2)Γ(b−2)=(b−1)(b−2)(b−a−1)(b−a−2)2F1(a,1,b,1)=Γ(b)Γ(b−a−1)Γ(b−a)Γ(b−1)=(b−1)Γ(b−1)Γ(b−a−1)(b−a−1)Γ(b−a−1)Γ(b−1)=b−1b−a−1S=2F1(a,2,b,1)−2F1(a,1,b,1)=S=(b−1)(b−2)(b−a−1)(b−a−2)−b−1(b−a−1)=b−1b−a−1.(b−2b−a−2−1)=(b−1)(b−a−1)(ab−a−2)=a(b−1)(b−a−1)(b−a−2)whatiused2F1(a,b,c,z)=Σan.bncn.znn!(n+1)!=1.2……(n+2−1)n=1.2…..(n+1−1)β(x,y)=∫01tx−1.(1−t)y−1dt=Γ(x).Γ(y)Γ(x+y) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-f-x-2-6x-6-f-x-2-4x-4-2x-x-R-then-f-3-f-9-5f-1-Next Next post: lim-x-pi-4-pi-4x-1-sin-2x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.