Menu Close

for-a-gt-0-and-b-gt-a-2-verify-the-follwing-claim-n-1-n-a-a-1-a-2-a-n-1-b-b-1-b-2-b-n-1-a-b-1-b-a-1-b-a-2-




Question Number 78456 by arkanmath7@gmail.com last updated on 17/Jan/20
for a>0 and b>a+2 ,  verify the follwing   claim:     Σ_(n=1) ^(  ∞)  n ((a(a+1)(a+2)...(a+n−1))/(b(b+1)(b+2)...(b+n−1))) =((a(b−1))/((b−a−1)(b−a−2)))
fora>0andb>a+2,verifythefollwingclaim:n=1na(a+1)(a+2)(a+n1)b(b+1)(b+2)(b+n1)=a(b1)(ba1)(ba2)
Answered by mind is power last updated on 17/Jan/20
=Σ_(n≥1) (((n+1−1)a_n )/b_n )=Σ_(n≥1) (((n+1)!.a_n )/(b_n .n!))−Σ_(n≥1) ((n!.a_n )/(n!.b_n ))=S  a_n =a(a+1)...(a+n−1)   _2 F_1 (a,b,c,z)=1+Σ_(n≥1) ((a_n .b_n )/c_n ).(z^n /(n!))  = lim_(z→1) { _2 F_1 (a,2,b,z)−_2  F_1 (a,1,b,z)}  we have  β(b,c−b).2F_1 (a,b,c,z)=∫_0 ^1 x^(b−1) (1−x)^(c−b−1) (1−zx)^(−a) dx  β(b,c−b) _2 F_1 (a,b,c,1)=∫_0 ^1 x^(b−1) (1−x)^(c−b−a−1) dx  ⇒β(b,c−b)  _2 F_1 (a,b,c,1)=β(b,c−b−a)  ⇒_2 F_1 =((β(b,c−b−a))/(β(b,c−b)))=((Γ(b)Γ(c−b−a)Γ(c))/(Γ(c−a)Γ(b)Γ(c−b)))⇔  2F_1 (a,b,c,1)=((Γ(c).Γ(c−a−b))/(Γ(c−a)Γ(c−b)))  2F_1 (a,2,b,1)=((Γ(b)Γ(b−a−2))/(Γ(b−a)Γ(b−2)))=(((b−1)(b−2)Γ(b−2)Γ(b−a−2))/((b−a−1)(b−a−2)Γ(b−a−2)Γ(b−2)))  =(((b−1)(b−2))/((b−a−1)(b−a−2)))  2F_1 (a,1,b,1)=((Γ(b)Γ(b−a−1))/(Γ(b−a)Γ(b−1)))=(((b−1)Γ(b−1)Γ(b−a−1))/((b−a−1)Γ(b−a−1)Γ(b−1)))  =((b−1)/(b−a−1))  S=2F_1 (a,2,b,1)−2F_1 (a,1,b,1)=  S=(((b−1)(b−2))/((b−a−1)(b−a−2)))−((b−1)/((b−a−1)))=((b−1)/(b−a−1)).(((b−2)/(b−a−2))−1)  =(((b−1))/((b−a−1)))((a/(b−a−2)))=((a(b−1))/((b−a−1)(b−a−2)))  what i used   2F_1 (a,b,c,z)=Σ((a_n .b_n )/c_n ).(z^n /(n!))  (n+1)!=1.2......(n+2−1)  n=1.2.....(n+1−1)  β(x,y)=∫_0 ^1 t^(x−1) .(1−t)^(y−1) dt=((Γ(x).Γ(y))/(Γ(x+y)))
=n1(n+11)anbn=n1(n+1)!.anbn.n!n1n!.ann!.bn=San=a(a+1)(a+n1)2F1(a,b,c,z)=1+n1an.bncn.znn!=limz1{2F1(a,2,b,z)2F1(a,1,b,z)}wehaveβ(b,cb).2F1(a,b,c,z)=01xb1(1x)cb1(1zx)adxβ(b,cb)2F1(a,b,c,1)=01xb1(1x)cba1dxβ(b,cb)2F1(a,b,c,1)=β(b,cba)2F1=β(b,cba)β(b,cb)=Γ(b)Γ(cba)Γ(c)Γ(ca)Γ(b)Γ(cb)2F1(a,b,c,1)=Γ(c).Γ(cab)Γ(ca)Γ(cb)2F1(a,2,b,1)=Γ(b)Γ(ba2)Γ(ba)Γ(b2)=(b1)(b2)Γ(b2)Γ(ba2)(ba1)(ba2)Γ(ba2)Γ(b2)=(b1)(b2)(ba1)(ba2)2F1(a,1,b,1)=Γ(b)Γ(ba1)Γ(ba)Γ(b1)=(b1)Γ(b1)Γ(ba1)(ba1)Γ(ba1)Γ(b1)=b1ba1S=2F1(a,2,b,1)2F1(a,1,b,1)=S=(b1)(b2)(ba1)(ba2)b1(ba1)=b1ba1.(b2ba21)=(b1)(ba1)(aba2)=a(b1)(ba1)(ba2)whatiused2F1(a,b,c,z)=Σan.bncn.znn!(n+1)!=1.2(n+21)n=1.2..(n+11)β(x,y)=01tx1.(1t)y1dt=Γ(x).Γ(y)Γ(x+y)

Leave a Reply

Your email address will not be published. Required fields are marked *