Menu Close

For-any-number-x-gt-1-x-Z-x-can-be-expressed-as-a-combination-of-numbers-multiplied-together-e-g-10-5-2-20-5-4-5-2-2-100-10-10-5-2-5-2-x-p-1-e-1-p-2-e-2-p-n-e-n-where-p-n-i




Question Number 7289 by FilupSmith last updated on 21/Aug/16
For any number x>1:x∈Z  x can be expressed as a combination  of numbers multiplied together.  e.g.  10=5×2  20=5×4=5×2×2  100=10×10=5×2×5×2     ∴ x = p_1 ^e_1  p_2 ^e_2  ...p_n ^e_n            where p_n  is the nth                                              prime factor                                              e_n  is the exponent  e.g.  x=810=8×10×11=4×2×5×2×11  x=2^4 ×5^1 ×11     ⇒ p_1 =2, e_1 =4, etc.     let ω(x) be the number of discrete prime factors  ∴ ω(x)=n  x=Π_(t=1) ^(ω(x)) p_t ^e_t       Therefore the number of prime factors  is given by:  ℧(x)=Σ_(t=0) ^(ω(x)) e_t      Question  How many combinations are there to  represent x as the product of k numbers?  (exluding 1. e.g. 10=10×1×1×1×1)  e.g.     3 number ⇒ 30=3×10=3×5×2              ℧(30)=3!=6 ways     My working so far:     x=a×b×...×k         combinations of k numbers  x=(a_1 ×a_2 ×...×a_(ω(a)) )...(k_1 ×...×k_(ω(k)) )  a_1 , a_2 , ..., k_1 , etc   are the prime factors  of a, b, ...., k     ∴ any arramgement with the bracets work  so long as k brackets are present     let C_k (x) be the combination of ways  to express x as the product of k  integers (not equal to 1).  x=(Π_(t=1) ^(ω(a)) a_t ^e_t  )(Π_(t=1) ^(ω(b)) b_t ^e_t  )...(Π_(t=1) ^(ω(k)) k_1 ^e_t  )  C_k (x)=???
Foranynumberx>1:xZxcanbeexpressedasacombinationofnumbersmultipliedtogether.e.g.10=5×220=5×4=5×2×2100=10×10=5×2×5×2x=p1e1p2e2pnenwherepnisthenthprimefactorenistheexponente.g.x=810=8×10×11=4×2×5×2×11x=24×51×11p1=2,e1=4,etc.letω(x)bethenumberofdiscreteprimefactorsω(x)=nx=ω(x)t=1ptetThereforethenumberofprimefactorsisgivenby:(x)=ω(x)t=0etQuestionHowmanycombinationsaretheretorepresentxastheproductofknumbers?(exluding1.e.g.10=10×1×1×1×1)e.g.3number30=3×10=3×5×2(30)=3!=6waysMyworkingsofar:x=a×b××kcombinationsofknumbersx=(a1×a2××aω(a))(k1××kω(k))a1,a2,,k1,etcaretheprimefactorsofa,b,.,kanyarramgementwiththebracetsworksolongaskbracketsarepresentletCk(x)bethecombinationofwaystoexpressxastheproductofkintegers(notequalto1).x=(ω(a)t=1atet)(ω(b)t=1btet)(ω(k)t=1k1et)Ck(x)=???
Commented by FilupSmith last updated on 21/Aug/16
lets say you was x as the product of two integers.  i.e.  k=2    x=(a_1 ×a_2 ×a_3 ...a_α )(b_1 ×b_2 ×b_3 ...b_β )     =(a_1 ×b_2 ×a_3 ...a_α )(b_1 ×a_2 ×b_3 ...b_β )  etc  x=(Π_(t=1) ^(ω(a)) a_t ^α_t  )(Π_(k=1) ^(ω(b)) b_t ^β_t  )  C_2 (x)=(Σ_(t=1) ^(ω(a)) α_t +Σ_(t=1) ^(ω(b)) β_t )  C_2 (x)=(℧(a)+℧(b))!    therefore does:  C_k (x)=[℧(a)+℧(b)+...+℧(k)]!
letssayyouwasxastheproductoftwointegers.i.e.k=2x=(a1×a2×a3aα)(b1×b2×b3bβ)=(a1×b2×a3aα)(b1×a2×b3bβ)etcx=(ω(a)t=1atαt)(ω(b)k=1btβt)C2(x)=(ω(a)t=1αt+ω(b)t=1βt)C2(x)=((a)+(b))!thereforedoes:Ck(x)=[(a)+(b)++(k)]!
Commented by prakash jain last updated on 21/Aug/16
Just to make sure that I understand your  question:  You are looking for a formula for finding  in how many ways a number can be written  as a product of k integers. Correct?  For this purpose do you count, for exmaple  2×5 and 5×2 as two different ways?
JusttomakesurethatIunderstandyourquestion:Youarelookingforaformulaforfindinginhowmanywaysanumbercanbewrittenasaproductofkintegers.Correct?Forthispurposedoyoucount,forexmaple2×5and5×2astwodifferentways?
Commented by FilupSmith last updated on 21/Aug/16
correct
correct

Leave a Reply

Your email address will not be published. Required fields are marked *