Menu Close

for-each-n-N-f-n-x-nx-1-x-2-n-for-each-x-0-x-1-and-a-n-0-1-f-n-x-dx-if-s-n-sin-pia-n-for-each-n-N-then-li-n-m-s-n-




Question Number 11089 by suci last updated on 11/Mar/17
for each n∈N, f_n (x)=nx(1−x^2 )^n   for each x, 0≤x≤1 and a_n =∫_0 ^1 f_n (x)dx  if s_n =sin(πa_n ), for each n∈N, then  li_(n→∼) m s_n =....???
$${for}\:{each}\:{n}\in\mathbb{N},\:{f}_{{n}} \left({x}\right)={nx}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} \\ $$$${for}\:{each}\:{x},\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:{a}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right){dx} \\ $$$${if}\:{s}_{{n}} ={sin}\left(\pi{a}_{{n}} \right),\:{for}\:{each}\:{n}\in\mathbb{N},\:{then} \\ $$$${l}\underset{{n}\rightarrow\sim} {{i}m}\:{s}_{{n}} =….??? \\ $$
Commented by FilupS last updated on 11/Mar/17
n∈N  f_n (x)=nx(1−x^2 )^n          0≤x≤1  a_n =∫_0 ^( 1) f_n (x)dx  s_n =sin(πa_n )  lim_(n→∞)  s_n =L  L=?     a_n =∫_0 ^( 1) f_n (x)dx  a_n =∫_0 ^( 1) nx(1−x^2 )^n dx  =n∫_0 ^( 1) x(1−x^2 )^n dx  u=1−x^2   du=−2xdx  =−n(1/2)∫_0 ^( 1) u^n du  =−n(1/2)((1/(n+1))u^(n+1) )_0 ^1   =−(n/(2(n+1)))(u^(n+1) )_0 ^1   =−(n/(2(n+1)))((1−x^2 )^(n+1) )_0 ^1   =−(n/(2(n+1)))(0^(n+1) −1^(n+1) )  =(n/(2(n+1)))  ∴a_n =(n/(2(n+1)))     s_n =sin(πa_n )  s_n =sin(π(n/(2(n+1))))  s_n =sin((1/2)π(n/((n+1))))     lim_(n→∞)  s_n =lim_(n→∞) sin((1/2)π(n/((n+1))))  =sin((1/2)π[lim_(n→∞) (n/((n+1)))])  L′Ho^� pital′s Law  =sin((1/2)π lim_(n→∞)  (1/1))  =sin((1/2)π)  ∴ L = 1     lim_(n→∞)  s_n =1
$${n}\in\mathbb{N} \\ $$$${f}_{{n}} \left({x}\right)={nx}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} \:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1} \\ $$$${a}_{{n}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} {f}_{{n}} \left({x}\right){dx} \\ $$$${s}_{{n}} =\mathrm{sin}\left(\pi{a}_{{n}} \right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{s}_{{n}} ={L} \\ $$$${L}=? \\ $$$$\: \\ $$$${a}_{{n}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} {f}_{{n}} \left({x}\right){dx} \\ $$$${a}_{{n}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} {nx}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx} \\ $$$$={n}\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx} \\ $$$${u}=\mathrm{1}−{x}^{\mathrm{2}} \\ $$$${du}=−\mathrm{2}{xdx} \\ $$$$=−{n}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {u}^{{n}} {du} \\ $$$$=−{n}\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}{u}^{{n}+\mathrm{1}} \right)_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=−\frac{{n}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left({u}^{{n}+\mathrm{1}} \right)_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=−\frac{{n}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left(\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} \right)_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=−\frac{{n}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left(\mathrm{0}^{{n}+\mathrm{1}} −\mathrm{1}^{{n}+\mathrm{1}} \right) \\ $$$$=\frac{{n}}{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$$\therefore{a}_{{n}} =\frac{{n}}{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$$\: \\ $$$${s}_{{n}} =\mathrm{sin}\left(\pi{a}_{{n}} \right) \\ $$$${s}_{{n}} =\mathrm{sin}\left(\pi\frac{{n}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\right) \\ $$$${s}_{{n}} =\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\frac{{n}}{\left({n}+\mathrm{1}\right)}\right) \\ $$$$\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{s}_{{n}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\frac{{n}}{\left({n}+\mathrm{1}\right)}\right) \\ $$$$=\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\left[\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}}{\left({n}+\mathrm{1}\right)}\right]\right) \\ $$$$\mathrm{L}'\mathrm{H}\hat {\mathrm{o}pital}'\mathrm{s}\:\mathrm{Law} \\ $$$$=\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{1}}\right) \\ $$$$=\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\right) \\ $$$$\therefore\:{L}\:=\:\mathrm{1} \\ $$$$\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{s}_{{n}} =\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *