Menu Close

for-f-x-dx-F-x-c-and-sgn-x-x-x-x-x-x-0-let-sgn-x-0-for-x-0-does-sgn-f-x-f-x-dx-sgn-f-x-f-x-dx-sgn-f-x-is-just-a-constant-1-or-0-




Question Number 4344 by Filup last updated on 12/Jan/16
for ∫f(x)dx=F(x)+c  and sgn(x)=(x/(∣x∣))=((∣x∣)/x)   ∀x≠0            let sgn(x)=0 for x=0    does   ∫sgn(f(x))f(x)dx=sgn(f(x))∫f(x)dx  ∵sgn(f(x)) is just a constant ±1 or 0.
forf(x)dx=F(x)+candsgn(x)=xx=xxx0letsgn(x)=0forx=0doessgn(f(x))f(x)dx=sgn(f(x))f(x)dxsgn(f(x))isjustaconstant±1or0.
Commented by Filup last updated on 12/Jan/16
Let f(x)=x    sgn(x)x=x((∣x∣)/x)=x(x/(∣x∣))=∣x∣                     N.B.: (x^2 /(∣x∣))=∣x∣   ∵x^2 ∧∣x∣>0    S_1 =∫sgn(x)xdx  =∫∣x∣dx     (1)    S_2 =sgn(x)∫xdx  =(1/2)sgn(x)x^2 +c  =(1/2)∣x∣x+c  (2)      if true:  (d/dx)((1/2)∣x∣x+c)=∣x∣  (d/dx)(∣x∣)=(d/dx)((x^2 )^(1/2) )  =(1/2)(x^2 )^(−(1/2)) 2x  =(x/(∣x∣))  (d/dx)((1/2)∣x∣x+c)=(1/2)(u′v+uv′)+0  u=∣x∣     v=x  u′=(x/(∣x∣))    v′=1  =(1/2)((x^2 /(∣x∣))+∣x∣)  =(1/2)(∣x∣+∣x∣)  =∣x∣    ∴∫sgn(x)xdx=sgn(x)∫xdx    Can we prove that the above is true/false  for limits −1≤x≤1?
Letf(x)=xsgn(x)x=xxx=xxx=∣xN.B.:x2x=∣xx2x∣>0S1=sgn(x)xdx=xdx(1)S2=sgn(x)xdx=12sgn(x)x2+c=12xx+c(2)iftrue:ddx(12xx+c)=∣xddx(x)=ddx((x2)12)=12(x2)122x=xxddx(12xx+c)=12(uv+uv)+0u=∣xv=xu=xxv=1=12(x2x+x)=12(x+x)=∣xsgn(x)xdx=sgn(x)xdxCanweprovethattheaboveistrue/falseforlimits1x1?
Commented by prakash jain last updated on 11/Jan/16
If f(x) is such that it does not change sign  within the limits of integration. You  can take out.
Iff(x)issuchthatitdoesnotchangesignwithinthelimitsofintegration.Youcantakeout.
Commented by 123456 last updated on 11/Jan/16
i think its not im general
ithinkitsnotimgeneral
Commented by Filup last updated on 12/Jan/16
∫_(−1) ^( 1) f(x)dx=∫_(−1) ^( 0) f(x)dx+∫_0 ^( 1) f(x)dx    ∴if true:  ∫_(−1) ^( 0) sgn(x)xdx+∫_0 ^( 1) sgn(x)xdx=sgn(x)∫_(−1) ^( 0) xdx+sgn(x)∫_0 ^( 1) xdx  ⇒^(???) ∫_(−1) ^( 0) sgn(x)xdx+∫_0 ^( 1) sgn(x)xdx=sgn(x)(∫_(−1) ^( 0) xdx+∫_0 ^( 1) xdx)
11f(x)dx=10f(x)dx+01f(x)dxiftrue:10sgn(x)xdx+01sgn(x)xdx=sgn(x)10xdx+sgn(x)01xdx???10sgn(x)xdx+01sgn(x)xdx=sgn(x)(10xdx+01xdx)

Leave a Reply

Your email address will not be published. Required fields are marked *