Menu Close

For-f-x-x-Is-there-a-defined-1-f-x-2-f-x-dx-




Question Number 2231 by Filup last updated on 10/Nov/15
For f(x)=x!  Is there a defined:    (1) f′(x)  (2) ∫f(x)dx
Forf(x)=x!Isthereadefined:(1)f(x)(2)f(x)dx
Commented by Filup last updated on 10/Nov/15
Is this a correct assumption for (1):    y=x!  y=x(x−1)(x−2)...  ∴y=Π_(i=1) ^x i    Using Chain rule:  ∴y′=[(x−1)(x−2)...]+[x(x−2)...]+...  y′=(y/x)+(y/(x−1))+...=y((1/x)+(1/(x−1))+...+1)  y′=yΣ_(i=1) ^(x−1) ((1/i))  ∴y′=y∙H(x−1)             where H(n) is the sum to the nth              harmonic term  y=Π_(i=1) ^x i  y′=yΣ_(i=1) ^(x−1) (1/i)    Note: I have no knowledge of differentiating  this function, so this is only a guess attempt
Isthisacorrectassumptionfor(1):y=x!y=x(x1)(x2)y=xi=1iUsingChainrule:y=[(x1)(x2)]+[x(x2)]+y=yx+yx1+=y(1x+1x1++1)y=yx1i=1(1i)y=yH(x1)whereH(n)isthesumtothenthharmonictermy=xi=1iy=yx1i=11iNote:Ihavenoknowledgeofdifferentiatingthisfunction,sothisisonlyaguessattempt
Commented by 123456 last updated on 10/Nov/15
f(x)=x!=Γ(x+1)  f′(x)=ψ(x+1)x!  ψ(x)=(d/dx)ln Γ(x)=((Γ′(x))/(Γ(x)))
f(x)=x!=Γ(x+1)f(x)=ψ(x+1)x!ψ(x)=ddxlnΓ(x)=Γ(x)Γ(x)

Leave a Reply

Your email address will not be published. Required fields are marked *