Menu Close

for-pi-lt-x-lt-pi-2-find-the-solution-of-sin-x-gt-sin-x-2-2-sin-x-1-




Question Number 131622 by rydasss last updated on 06/Feb/21
for -π < x < - (π/2) find the solution of  sin x >  ((sin x + 2)/(2 sin x + 1))
$${for}\:-\pi\:<\:{x}\:<\:-\:\frac{\pi}{\mathrm{2}}\:{find}\:{the}\:{solution}\:{of} \\ $$$${sin}\:{x}\:>\:\:\frac{{sin}\:{x}\:+\:\mathrm{2}}{\mathrm{2}\:{sin}\:{x}\:+\:\mathrm{1}} \\ $$
Answered by mr W last updated on 07/Feb/21
−π<x<−(π/2) ⇒ −1<sin x<0  case 1: 2sin x+1>0, i.e. sin x>−(1/2)  sin x(2sin x+1)>sin x+2  sin^2  x>1  ⇒no solution!  case 2: 2sin x+1<0, i.e. sin x<−(1/2)  sin x(2sin x+1)<sin x+2  sin^2  x<1  ⇒sin x>−1  ⇒−((5π)/6)<x<−(π/2) (solution)
$$−\pi<{x}<−\frac{\pi}{\mathrm{2}}\:\Rightarrow\:−\mathrm{1}<\mathrm{sin}\:{x}<\mathrm{0} \\ $$$${case}\:\mathrm{1}:\:\mathrm{2sin}\:{x}+\mathrm{1}>\mathrm{0},\:{i}.{e}.\:\mathrm{sin}\:{x}>−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:{x}\left(\mathrm{2sin}\:{x}+\mathrm{1}\right)>\mathrm{sin}\:{x}+\mathrm{2} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{x}>\mathrm{1} \\ $$$$\Rightarrow{no}\:{solution}! \\ $$$${case}\:\mathrm{2}:\:\mathrm{2sin}\:{x}+\mathrm{1}<\mathrm{0},\:{i}.{e}.\:\mathrm{sin}\:{x}<−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:{x}\left(\mathrm{2sin}\:{x}+\mathrm{1}\right)<\mathrm{sin}\:{x}+\mathrm{2} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{x}<\mathrm{1} \\ $$$$\Rightarrow\mathrm{sin}\:{x}>−\mathrm{1} \\ $$$$\Rightarrow−\frac{\mathrm{5}\pi}{\mathrm{6}}<{x}<−\frac{\pi}{\mathrm{2}}\:\left({solution}\right) \\ $$
Commented by rydasss last updated on 07/Feb/21
Thank you so much.
$${Thank}\:{you}\:{so}\:{much}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *