Menu Close

For-S-1-1-2-1-3-1-n-S-H-n-Harmonic-sequence-H-n-i-1-n-1-i-Can-you-solve-the-partial-sum-




Question Number 3929 by Filup last updated on 25/Dec/15
For:  S=1+(1/2)+(1/3)+...+(1/n)  S=H_n     Harmonic sequence  H_n =Σ_(i=1) ^n (1/i)  Can you solve the partial sum?
$$\mathrm{For}: \\ $$$${S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}} \\ $$$${S}={H}_{{n}} \:\:\:\:{Harmonic}\:{sequence} \\ $$$${H}_{{n}} =\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{i}} \\ $$$${Can}\:{you}\:{solve}\:{the}\:{partial}\:{sum}? \\ $$
Commented by Yozzii last updated on 25/Dec/15
Wolfram Alpha gives                     H_n =ψ_0 (n+1)+γ  where γ−Euler Mascheroni constant  ψ_0 (z) is the digamma function defined  by the logarithmic derivative of the  gamma function Γ(z).             ψ_0 (z)=(d/dz){lnΓ(z)}=((Γ^′ (z))/(Γ(z)))  The digamma function satisfies                 ψ_0 (z)=∫_0 ^∞ ((e^(−t) /t)−(e^(−zt) /(1−e^(−t) )))dt.  For z≡n , n∈Z^+ ,  ψ_0 (n)=−γ+Σ_(i=1) ^(n−1) (1/i)⇒H_(n−1) =ψ_0 (n)+γ.
$${Wolfram}\:{Alpha}\:{gives}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{H}_{{n}} =\psi_{\mathrm{0}} \left({n}+\mathrm{1}\right)+\gamma \\ $$$${where}\:\gamma−{Euler}\:{Mascheroni}\:{constant} \\ $$$$\psi_{\mathrm{0}} \left({z}\right)\:{is}\:{the}\:{digamma}\:{function}\:{defined} \\ $$$${by}\:{the}\:{logarithmic}\:{derivative}\:{of}\:{the} \\ $$$${gamma}\:{function}\:\Gamma\left({z}\right). \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\psi_{\mathrm{0}} \left({z}\right)=\frac{{d}}{{dz}}\left\{{ln}\Gamma\left({z}\right)\right\}=\frac{\Gamma^{'} \left({z}\right)}{\Gamma\left({z}\right)} \\ $$$${The}\:{digamma}\:{function}\:{satisfies}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\psi_{\mathrm{0}} \left({z}\right)=\int_{\mathrm{0}} ^{\infty} \left(\frac{{e}^{−{t}} }{{t}}−\frac{{e}^{−{zt}} }{\mathrm{1}−{e}^{−{t}} }\right){dt}. \\ $$$${For}\:{z}\equiv{n}\:,\:{n}\in\mathbb{Z}^{+} , \\ $$$$\psi_{\mathrm{0}} \left({n}\right)=−\gamma+\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{i}}\Rightarrow{H}_{{n}−\mathrm{1}} =\psi_{\mathrm{0}} \left({n}\right)+\gamma. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *