Menu Close

For-S-1-1-2-1-3-1-n-S-H-n-Harmonic-sequence-H-n-i-1-n-1-i-Can-you-solve-the-partial-sum-




Question Number 3929 by Filup last updated on 25/Dec/15
For:  S=1+(1/2)+(1/3)+...+(1/n)  S=H_n     Harmonic sequence  H_n =Σ_(i=1) ^n (1/i)  Can you solve the partial sum?
For:S=1+12+13++1nS=HnHarmonicsequenceHn=ni=11iCanyousolvethepartialsum?
Commented by Yozzii last updated on 25/Dec/15
Wolfram Alpha gives                     H_n =ψ_0 (n+1)+γ  where γ−Euler Mascheroni constant  ψ_0 (z) is the digamma function defined  by the logarithmic derivative of the  gamma function Γ(z).             ψ_0 (z)=(d/dz){lnΓ(z)}=((Γ^′ (z))/(Γ(z)))  The digamma function satisfies                 ψ_0 (z)=∫_0 ^∞ ((e^(−t) /t)−(e^(−zt) /(1−e^(−t) )))dt.  For z≡n , n∈Z^+ ,  ψ_0 (n)=−γ+Σ_(i=1) ^(n−1) (1/i)⇒H_(n−1) =ψ_0 (n)+γ.
WolframAlphagivesHn=ψ0(n+1)+γwhereγEulerMascheroniconstantψ0(z)isthedigammafunctiondefinedbythelogarithmicderivativeofthegammafunctionΓ(z).ψ0(z)=ddz{lnΓ(z)}=Γ(z)Γ(z)Thedigammafunctionsatisfiesψ0(z)=0(ettezt1et)dt.Forzn,nZ+,ψ0(n)=γ+n1i=11iHn1=ψ0(n)+γ.

Leave a Reply

Your email address will not be published. Required fields are marked *