Question Number 133010 by rs4089 last updated on 18/Feb/21
$${for}\:{the}\:{extremum}\:{values}\:{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:{subject}\:{to}\:{the}\:{constraints} \\ $$$${ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +{cz}^{\mathrm{2}} =\mathrm{1}\:{and}\:{lx}+{my}+{nz}=\mathrm{0}\:. \\ $$$${show}\:{that}\:{the}\:{stationary}\:{points}\:{setisfy}\:{the}\:{realation} \\ $$$$\frac{{l}^{\mathrm{2}} }{\mathrm{1}+{a}\lambda_{\mathrm{1}} }+\frac{{m}^{\mathrm{2}} }{\mathrm{1}+{b}\lambda_{\mathrm{1}} }+\frac{{n}^{\mathrm{2}} }{\mathrm{1}+{c}\lambda_{\mathrm{1}} }=\mathrm{0} \\ $$