Menu Close

For-vectors-v-and-u-where-v-u-R-n-What-is-the-angle-between-v-and-u-both-are-from-origin-




Question Number 6875 by FilupSmith last updated on 01/Aug/16
For vectors v and u where:  v,u∈R^n   What is the angle between v and u?  (both are from origin)
Forvectorsvanduwhere:v,uRnWhatistheanglebetweenvandu?(botharefromorigin)
Commented by prakash jain last updated on 01/Aug/16
cos θ=((v∙u)/(vu))
cosθ=vuvu
Commented by FilupSmith last updated on 01/Aug/16
How can we show this?
Howcanweshowthis?
Commented by FilupSmith last updated on 01/Aug/16
Is this correct?  c^2 =a^2 +b^2 −2abcosθ  cosθ=((c^2 −a^2 −b^2 )/(−2ab))  c=Distance between v and u  c=∥v−u∥=(√(∥v∥^2 +∥u∥^2 −2v∙u))  proof for this needed  a=∥v∥=(√(v_1 ^2 +...+v_n ^2 ))=(√(Σ_(t=1) ^n v_t ^2 ))  b=∥u∥=(√(u_1 ^2 +...+u_n ^2 ))=(√(Σ_(t=1) ^n u_t ^2 ))    cosθ=−((∥v−u∥^2 −∥v∥^2 −∥u∥^2 )/(2∥v∥∥u∥))  cosθ=−((((√(∥v∥^2 +∥u∥^2 −2v∙u)))^2 −∥v∥^2 −∥u∥^2 )/(2∥v∥∥u∥))  cosθ=−((∥v∥^2 +∥u∥^2 −2v∙u−∥v∥^2 −∥u∥^2 )/(2∥v∥∥u∥))  cosθ=−((−2v∙u)/(2∥v∥∥u∥))  cosθ=((2v∙u)/(∥v∥∥u∥))=((2Σ_(t=1) ^n v_t u_t )/( (√((Σ_(t=1) ^n v_t ^2 )(Σ_(t=1) ^n u_t ^2 )))))
Isthiscorrect?c2=a2+b22abcosθcosθ=c2a2b22abc=Distancebetweenvanduc=∥vu∥=v2+u22vuproofforthisneededa=∥v∥=v12++vn2=nt=1vt2b=∥u∥=u12++un2=nt=1ut2cosθ=vu2v2u22v∥∥ucosθ=(v2+u22vu)2v2u22v∥∥ucosθ=v2+u22vuv2u22v∥∥ucosθ=2vu2v∥∥ucosθ=2vuv∥∥u=2nt=1vtut(nt=1vt2)(nt=1ut2)

Leave a Reply

Your email address will not be published. Required fields are marked *